
Computational Syntax Exam

LT2214, University of Gothenburg

31 May 2024

This exam has four questions. Each question is worth 15 points. You need 30
points for the mark G, 45 for VG.
As your help, we provide two tables: UD labels and GF constructs.
Teacher: Aarne Ranta
Email: aarne.ranta@cse.gu.se
Phone: 031-772 10 82 (also connects to mobile phone)

1

relation explanation dependent-head example

acl clausal modifier of noun S-N the moon as we see it
acl:relcl relative clause modifier S-N the moon that we see
advcl adverbial clause modifier S-C I leave if she goes
advmod adverbial modifier ADV-C he sleeps now
amod adjectival modifier ADJ-N black cat
appos appositional modifier N-N Macron, the president
aux auxiliary AUX-S does he sing
case case marking ADP-N on the moon
cc coordinating conjunction CCONJ-C and dogs
ccomp clausal complement S-C I know that he runs
compound compound N-N data science
conj conjunct C-C cats and dogs
cop copula AUX-S he is old
csubj clausal subject S-S that is moves is clear
dep unspecified dependency C-C (if nothing else works)
det determiner DET-N the cat
expl expletive PRON-S there is hope
fixed fixed multiword expression ADP-C because of
flat flat multiword expression PROPN-PROPN Adam Smith
iobj indirect object N-VERB she gave us a hint
mark marker PART/SCONJ-S to go
nmod nominal modifier NOUN-NOUN man on the moon
nmod:poss possessive modifier N-NOUN my cat
nsubj nominal subject N-S John walks
nsubj:pass nominal subject of passive N-VERB John was seen
nummod numeric modifier NUM-N five cats
obj object N-VERB she sees us
obl oblique nominal N-S she comes with us
parataxis parataxis VERB-VERB I said: come here
punct punctuation PUNCT-S I see !
root root S- John **walks
xcomp open clausal complement S-S I want to go

Syntactic relations used in UD standard 2, together with their typical uses. In
the examples, the dependent is boldfaced and its head underlined. S means a
sentence-like, N a noun-like, and C any kind of phrase.

2

Construct Notation Example

Abstract syntax module abstract abstract Lang =. . .
Concrete syntax module concrete concrete LangEng of Lang Lang =. . .
Resource module resource resource ResEng Lang =. . .
Module extension ** abstract Lang = Noun,Verb **. . .
Module opening open resource ResEng = open Prelude in. . .
Abstract syntax category cat cat NP

Abstract syntax function fun fun Pred : NP -> VP -> S

Linearization type lincat lincat N = {s : Number => Str}
Linearization rule lin lin Pred np vp = np.s!Nom ++ vp!np.a

Parameter type param param Case = Nom | Acc

Auxiliary operation oper oper addS : Str -> Str = \x -> x + "s"

String concatenation ++ "loves" ++ "Mary"

Token concatenation + "Maria" +"m" ⇓ "Mariam"

Function type -> NP -> VP -> S

Function application f a b Pred np vp

Function abstraction \ -> \x,y -> x + y

Table type => Case => Str

Table table table {Nom =>"she" ; Acc =>"her"}
Selection from table ! she NP.s ! Acc ⇓ "her"

Table with one branch \\ => \\p,q => np ! q ! p

Record type {. . . :. . . } {s : Str ; g : Gender}
Record {. . . =. . . } {s = "doctor" ; g = Fem}
Projection from record . {s = "doctor"}.s ⇓ "doctor"

Record update ** doctor_N ** {g = Masc}

Case expression case case np.a of {Ag n _ => cn.s ! n}

Tuple type * Number * Case

Tuple <,> <Sg,Dat>

Comment -- -- comment till the end of line

Comment {- -} {- comment of any length -}

This is a reading guide for GF notation. The first five rows are about modules,
the next six list the different kinds of rules. The rest are expressions for types
and objects. The notation e ⇓ v means that expression e is computed to value
v.

3

Question 1

Show the Universal Dependency tree of the following sentence:
UD is a framework for consistent annotation of grammar across different

human languages.
Show it in two formats:
• as CoNLLu with fields ID, FORM, LEMMA, POS, DEPREL, HEAD
• as a graphical figure with arrows and dependency labels.

Question 2

Draw a phrase structure tree for the example sentence of Question 1, maintaining
as much as possible of the same structure as your UD tree. This means that
each head together with its dependents should form a subtree. Use familiar
category labels such as S, NP, VP, CN, AP, Det, Prep, V.

Write a context-free grammar that recognizes the sentence with the tree that
you drew.

Question 3

Here is a fragment of an abstract syntax of sentences consisting of a subject, a
verb, and an object:

abstract Sentence = {

cat

S ; NP ; VP ; V2 ;

fun

PredVP : NP -> VP -> S ; -- add subject to verb phrase

ComplV2 : V2 -> NP -> VP ; -- verb phrase from verb and object

}

In concrete syntax, any of the following constituent orders are possible:
• SVO: subject-verb-object
• SOV: subject-object-verb
• VSO: verb-subject-object
• VOS: verb-object-subject
• OVS: object-verb-subject
• OSV: object-subject-verb

Write concrete syntaxes for each of these orders, named SentenceSVO, etc. You
can assume that subjects, verbs, and objects are just strings (with no mor-
phological features or agreement), but you may still need to use records as
linearization types.

Question 4

Now consider one of the constituent orders of the previous question, SOV, as
used in Latin. Write a concrete syntax SentenceLat with the following mor-
phological parameters and agreement rules:

4

• Case, with values Nom, Acc, Gen, Dat, Abl.
• Number, with values Sg, Pl.
• Person, with values Per1, Per2, Per3.
• NP has inherent Number and Person, and variable Case.
• VP has variable Number and Person.
• V2 has variable Number and Person, and inherent Case (for the object).
• The subject of a sentence has case Nom.
• The object of a sentence gets its case from the verb.
• The verb of a sentence gets its number and person from the subject.

For example, the following sentences can be formed:

Ioannes Mariam amat

Ioannes (Sg, Per3)(Nom) Maria (Acc) amare (Sg, Per3)(Acc)

"John loves Mary"

vos mihi nocetis

vos (Pl, Per2)(Nom) ego (Dat) nocere (Pl, Per2)(Dat)

"you harm me"

Make sure to include all lincat, lin, and param definitions required to imple-
ment this. But your solution need only cover the syntactic functions PredVP
and ComplV2, no words.

5

