Computational Syntax Exam

LT2214, University of Gothenburg
31 May 2024

This exam has four questions. Each question is worth 15 points. You need 30
points for the mark G, 45 for VG.

As your help, we provide two tables: UD labels and GF constructs.

Teacher: Aarne Ranta

Email: aarne.ranta@cse.gu.se

Phone: 031-772 10 82 (also connects to mobile phone)

relation

explanation

dependent-head

example

acl
acl:relcl
advcl
advmod
amod
appos

aux

case

cc

ccomp
compound
conj

cop

csubj

dep

det

expl
fixed
flat

iobj

mark
nmod
nmod: poss
nsubj
nsubj:pass
nummod
obj

obl
parataxis
punct
root
xcomp

clausal modifier of noun
relative clause modifier
adverbial clause modifier
adverbial modifier
adjectival modifier
appositional modifier
auxiliary

case marking
coordinating conjunction
clausal complement
compound

conjunct

copula

clausal subject
unspecified dependency
determiner

expletive

fixed multiword expression

flat multiword expression
indirect object

marker

nominal modifier
possessive modifier
nominal subject

nominal subject of passive

numeric modifier

object

oblique nominal
parataxis

punctuation

root

open clausal complement

SN
SN

s-C

ADV-C
ADJ-N

N-N

AUX-S
ADP-N
CCONJ-C
s-C

N-N

c-C

AUX-S

S-S

c-C

DET-N
PRON-S
ADP-C
PROPN-PROPN
N-VERB
PART/SCONJ-S
NOUN-NOUN
N-NOUN

N-S

N-VERB
NUM-N
N-VERB

N-S
VERB-VERB
PUNCT-S

S-

S-S

the moon as we see it
the moon that we see
I leave if she goes

he sleeps now

black cat

Macron, the president
does he sing

on the moon

and dogs

I know that he runs
data science

cats and dogs

he ts old

that is mowves is clear
(if nothing else works)
the cat

there is hope

because of

Adam Smith

she gave us a hint

to go

M on the moon
my cat

John walks

John was seen

five cats

she sees us

she comes with us

I said: come here

I see !

John **walks

I want to go

Syntactic relations used in UD standard 2, together with their typical uses. In
the examples, the dependent is boldfaced and its head underlined. S means a
sentence-like, N a noun-like, and C any kind of phrase.

This is a reading guide for GF

V.

Construct Notation | Example

Abstract syntax module abstract | abstract Lang =...

Concrete syntax module concrete concrete LangEng of Lang Lang =...
Resource module resource | resource ResEng Lang =...

Module extension *k abstract Lang = Noun,Verb *x...
Module opening open resource ResEng = open Prelude in...
Abstract syntax category | cat cat NP

Abstract syntax function | fun fun Pred : NP -> VP -> S
Linearization type lincat lincat N = {s : Number => Str}
Linearization rule lin lin Pred np vp = np.s!Nom ++ vp!np.a
Parameter type param param Case = Nom | Acc

Auxiliary operation oper oper addS : Str -> Str = \x -> x + "s"
String concatenation ++ "loves" ++ "Mary"

Token concatenation + "Maria" +"m" | "Mariam"

Function type -> NP -> VP -> S

Function application fab Pred np vp

Function abstraction \ > \x,y > x +y

Table type = Case => Str

Table table table {Nom =>"she" ; Acc =>"her"}
Selection from table ! she NP.s ! Acc || "her"

Table with one branch \\ = \\p,qg =>np ! q!p

Record type

Record

Projection from record
Record update

Case expression

Tuple type

Tuple

Comment

Comment

<,>

{- -}

s : Str ; : Gender
g
s "doctor" ; = Fem
g

{s = "doctor"}.s | "doctor"
doctor_N *x {g = Masc}

case np.a of {Ag n _ => cn.s ! n}
Number * Case

<Sg,Dat>

-- comment till the end of line
{- comment of any length -}

notation. The first five rows are about modules,
the next six list the different kinds of rules. The rest are expressions for types
and objects. The notation e || v means that expression e is computed to value

Question 1

Show the Universal Dependency tree of the following sentence:

UD is a framework for consistent annotation of grammar across different
human languages.

Show it in two formats:

e as CoNLLu with fields ID, FORM, LEMMA, POS, DEPREL, HEAD

e as a graphical figure with arrows and dependency labels.

Question 2

Draw a phrase structure tree for the example sentence of Question 1, maintaining
as much as possible of the same structure as your UD tree. This means that
each head together with its dependents should form a subtree. Use familiar
category labels such as S, NP, VP, CN, AP, Det, Prep, V.

Write a context-free grammar that recognizes the sentence with the tree that
you drew.

Question 3

Here is a fragment of an abstract syntax of sentences consisting of a subject, a
verb, and an object:

abstract Sentence = {

cat
S ; NP ; VP ; V2 ;
fun
PredVP : NP -> VP -> S ; -- add subject to verb phrase
ComplV2 : V2 -> NP -> VP ; -- verb phrase from verb and object
X

In concrete syntax, any of the following constituent orders are possible:

e SVO: subject-verb-object
SOV: subject-object-verb
VSO: verb-subject-object
VOS: verb-object-subject
OVS: object-verb-subject

e OSV: object-subject-verb
Write concrete syntaxes for each of these orders, named SentenceSV0, etc. You
can assume that subjects, verbs, and objects are just strings (with no mor-
phological features or agreement), but you may still need to use records as
linearization types.

Question 4

Now consider one of the constituent orders of the previous question, SOV, as
used in Latin. Write a concrete syntax SentenceLat with the following mor-
phological parameters and agreement rules:

Case, with values Nom, Acc, Gen, Dat, Abl.

Number, with values Sg, Pl.

Person, with values Perl, Per2, Per3.

NP has inherent Number and Person, and variable Case.

VP has variable Number and Person.

V2 has variable Number and Person, and inherent Case (for the object).
The subject of a sentence has case Nom.

The object of a sentence gets its case from the verb.

The verb of a sentence gets its number and person from the subject.
For example, the following sentences can be formed:

Ioannes Mariam amat
Toannes (Sg, Per3) (Nom) Maria (Acc) amare (Sg, Per3) (Acc)
"John loves Mary"

vos mihi nocetis
vos (P1l, Per2) (Nom) ego (Dat) mnocere (P1l, Per2) (Dat)
"you harm me"

Make sure to include all 1incat, 1in, and param definitions required to imple-
ment this. But your solution need only cover the syntactic functions PredVP
and ComplV2, no words.

