
Computational Syntax Exam

LT2214

May 24, 2023

This exam has four questions. Each question is worth 15 points. You need
30 points for the mark G, 45 for VG.

As your help, we provide two tables: UD labels and GF constructs.

1

relation explanation dependent-head example
acl clausal modifier of noun S-N the moon as we see it
acl:relcl relative clause modifier S-N the moon that we see
advcl adverbial clause modifier S-C I leave if she goes
advmod adverbial modifier ADV-C he sleeps now
amod adjectival modifier ADJ-N black cat
appos appositional modifier N-N Macron, the president
aux auxiliary AUX-S does he sing
case case marking ADP-N on the moon
cc coordinating conjunction CCONJ-C and dogs
ccomp clausal complement S-C I know that he runs
compound compound N-N data science
conj conjunct C-C cats and dogs
cop copula AUX-S he is old
csubj clausal subject S-S that is moves is clear
dep unspecified dependency C-C (if nothing else works)
det determiner DET-N the cat
expl expletive PRON-S there is hope
fixed fixed multiword expression ADP-C because of
flat flat multiword expression PROPN-PROPN Adam Smith
iobj indirect object N-VERB she gave us a hint
mark marker PART/SCONJ-S to go
nmod nominal modifier NOUN-NOUN man on the moon
nmod:poss possessive modifier N-NOUN my cat
nsubj nominal subject N-S John walks
nsubj:pass nominal subject of passive N-VERB John was seen
nummod numeric modifier NUM-N five cats
obj object N-VERB she sees us
obl oblique nominal N-S she comes with us
parataxis parataxis VERB-VERB I said: come here
punct punctuation PUNCT-S I see !
root root S- John **walks
xcomp open clausal complement S-S I want to go

Syntactic relations used in UD standard 2, together with their typical uses. In
the examples, the dependent is boldfaced and its head underlined. S means a
sentence-like, N a noun-like, and C any kind of phrase.

2

Construct Notation Example

Abstract syntax module abstract abstract Lang =. . .
Concrete syntax module concrete concrete LangEng of Lang Lang =. . .
Resource module resource resource ResEng Lang =. . .
Module extension ** abstract Lang = Noun,Verb **. . .
Module opening open resource ResEng = open Prelude in. . .
Abstract syntax category cat cat NP

Abstract syntax function fun fun Pred : NP -> VP -> S

Linearization type lincat lincat N = {s : Number => Str}
Linearization rule lin lin Pred np vp = np.s!Nom ++ vp!np.a

Parameter type param param Case = Nom | Acc

Auxiliary operation oper oper addS : Str -> Str = \x -> x + "s"

String concatenation ++ "loves" ++ "Mary"

Token concatenation + "Maria" +"m" ⇓ "Mariam"

Function type -> NP -> VP -> S

Function application f a b Pred np vp

Function abstraction \ -> \x,y -> x + y

Table type => Case => Str

Table table table {Nom =>"she" ; Acc =>"her"}
Selection from table ! she NP.s ! Acc ⇓ "her"

Table with one branch \\ => \\p,q => np ! q ! p

Record type {. . . :. . . } {s : Str ; g : Gender}
Record {. . . =. . . } {s = "doctor" ; g = Fem}
Projection from record . {s = "doctor"}.s ⇓ "doctor"

Record update ** doctor_N ** {g = Masc}

Case expression case case np.a of {Ag n _ => cn.s ! n}

Tuple type * Number * Case

Tuple <,> <Sg,Dat>

Comment -- -- comment till the end of line

Comment {- -} {- comment of any length -}

This is a reading guide for GF notation. The first five rows are about modules,
the next six list the different kinds of rules. The rest are expressions for types
and objects. The notation e ⇓ v means that expression e is computed to value
v.

3

Question 1

Show the Universal Dependency tree of the following sentence:
Universal Dependencies is a framework for consistent annotation of gram-

mar across different human languages.
Show it in two formats:
• as CoNLLu with fields ID, FORM, LEMMA, POS, DEPREL, HEAD
• as a graphical figure with arrows and dependency labels.

Question 2

Draw a phrase structure tree for the example sentence of Question 1, maintaining
as much as possible of the same structure as your UD tree.

Write a context-free grammar that recognizes the sentence with the tree that
you drew.

Question 3

Here is a fragment of an abstract syntax of phrases:

abstract Noun = {

cat

CN ; NP ; AP ; Det ;

fun

AdjCN : AP -> CN -> CN ;

DetNP : Det -> CN -> NP ;

}

In many languages (e.g. Germanic, Latin, Slavic, Semitic), the categories have
the following features:
• CN has variable number and case, inherent gender
• NP has variable case, inherent number and gender
• AP has veriable gender, number, and case
• Det has variable gender and case, inherent number

Define the linearization types of these two categories in accordance to these
features. You don’t need to define what number, gender and case are; they are
different in different languages even if their use is similar.

Also define the linearization functions of the two functions, so that the types
match in the expected way and the results become type-correct.
• in AdjCN, the AP agrees to the gender of the CN, and the resulting CN

inherits it
• in DetCN, the CN agrees to the number of the Det, and the resulting NP

inherits the number and the gender from its constituents
You can select the constituent order in any way you want. It differs between
languages even when the agreement structure remains the same.

Here are some examples from Latin, using the same word order as English
(which is possible in Latin although not always the best choice):

4

• omnis altus mons ”every high mountain” (singular, masculine, nomina-
tive)

• omni alto monte ”every high mountain” (singular, masculine, ablative)
• omne altum castellum ”every high castle” (singular, neuter, nominative)
• tres alti montes ”three high mountains” (plural, masculine, nominative)

Question 4

The formal language
{anbncn | n = 0, 1, 2, . . .}

consists of strings of a’s, b’s and c’s, in this order, and an equal number of each.
Thus the following strings belong to the language:

a b c

a a b b c c

a a a b b b c c c

and so on for any number n. Also the empty string is included (with n=0).
But the following do not:

a a b c c

b b a a c c

This language is known to be non-context-free. Therefore, it is impossible
to write a context-free grammar that covers it exactly. But GF is stronger than
context-free, and it is easy to write a GF grammar for it.

Your task is hence to write a GF grammar (abstract and concrete syntax)
for this language.

Hint: use discontinuous constituents.

5

