Computational Syntax Exam

LT2214
May 24, 2023

This exam has four questions. Each question is worth 15 points. You need
30 points for the mark G, 45 for VG.
As your help, we provide two tables: UD labels and GF constructs.

relation
acl
acl:relcl
advcl
advmod
amod
appos

aux

case

cc

ccomp
compound
conj

cop

csubj

dep

det

expl
fixed
flat

iobj

mark
nmod
nmod:poss
nsubj
nsubj:pass
nummod
obj

obl
parataxis
punct
root
xcomp

explanation

clausal modifier of noun
relative clause modifier
adverbial clause modifier
adverbial modifier
adjectival modifier
appositional modifier
auxiliary

case marking
coordinating conjunction
clausal complement
compound

conjunct

copula

clausal subject
unspecified dependency
determiner

expletive

fixed multiword expression
flat multiword expression
indirect object

marker

nominal modifier
possessive modifier
nominal subject

nominal subject of passive
numeric modifier

object

oblique nominal
parataxis

punctuation

root

open clausal complement

dependent-head
S-N

S-N

S-C

ADV-C
ADJ-N

N-N

AUX-S
ADP-N
CCONJ-C

S-C

N-N

C-C

AUX-S

S-S

C-C

DET-N
PRON-S
ADP-C
PROPN-PROPN
N-VERB
PART/SCONJ-S
NOUN-NOUN
N-NOUN

N-S

N-VERB
NUM-N
N-VERB

N-S
VERB-VERB
PUNCT-S

S-

S-S

example

the moon as we see it
the moon that we see
I leave if she goes

he sleeps now

black cat

Macron, the president
does he sing

on the @

and dogs

I know that he runs
data science

cats and dogs

he ts old

that is mowves is clear
(if nothing else works)
the cat

there is hope

because of

Adam Smith

she gave us a hint

to go

M on the moon
my cat

John walks

John was seen

five cats

she sees us

she comes with us

I said: come here

I see !

John **walks

I want to go

Syntactic relations used in UD standard 2, together with their typical uses. In
the examples, the dependent is boldfaced and its head underlined. S means a
sentence-like, N a noun-like, and C any kind of phrase.

This is a reading guide for GF

V.

Construct Notation | Example

Abstract syntax module abstract | abstract Lang =...

Concrete syntax module concrete concrete LangEng of Lang Lang =...
Resource module resource | resource ResEng Lang =...

Module extension *k abstract Lang = Noun,Verb *x...
Module opening open resource ResEng = open Prelude in...
Abstract syntax category | cat cat NP

Abstract syntax function | fun fun Pred : NP -> VP -> S
Linearization type lincat lincat N = {s : Number => Str}
Linearization rule lin lin Pred np vp = np.s!Nom ++ vp!np.a
Parameter type param param Case = Nom | Acc

Auxiliary operation oper oper addS : Str -> Str = \x -> x + "s"
String concatenation ++ "loves" ++ "Mary"

Token concatenation + "Maria" +"m" | "Mariam"

Function type -> NP -> VP -> S

Function application fab Pred np vp

Function abstraction \ > \x,y > x +y

Table type = Case => Str

Table table table {Nom =>"she" ; Acc =>"her"}
Selection from table ! she NP.s ! Acc || "her"

Table with one branch \\ = \\p,qg =>np ! q!p

Record type {...:...} | {s : Str ; g : Gender}

Record {...=...} | {s = "doctor" ; g = Fem}

Projection from record . {s = "doctor"}.s | "doctor"

Record update *ok doctor_N *x {g = Masc}

Case expression case case np.a of {Ag n _ => cn.s ! n}
Tuple type * Number * Case

Tuple <,> <Sg,Dat>

Comment - -- comment till the end of line
Comment {- -} {- comment of any length -}

notation. The first five rows are about modules,
the next six list the different kinds of rules. The rest are expressions for types
and objects. The notation e || v means that expression e is computed to value

Question 1

Show the Universal Dependency tree of the following sentence:

Universal Dependencies is a framework for consistent annotation of gram-
mar across different human languages.

Show it in two formats:

e as CoNLLu with fields ID, FORM, LEMMA, POS, DEPREL, HEAD

e as a graphical figure with arrows and dependency labels.

Question 2

Draw a phrase structure tree for the example sentence of Question 1, maintaining
as much as possible of the same structure as your UD tree.

Write a context-free grammar that recognizes the sentence with the tree that
you drew.

Question 3

Here is a fragment of an abstract syntax of phrases:

abstract Noun = {
cat
CN ; NP ; AP ; Det ;
fun
AdjCN : AP -> CN -> CN ;
DetNP : Det -> CN -> NP ;
}

In many languages (e.g. Germanic, Latin, Slavic, Semitic), the categories have
the following features:
e CN has variable number and case, inherent gender
e NP has variable case, inherent number and gender
e AP has veriable gender, number, and case
e Det has variable gender and case, inherent number
Define the linearization types of these two categories in accordance to these
features. You don’t need to define what number, gender and case are; they are
different in different languages even if their use is similar.
Also define the linearization functions of the two functions, so that the types
match in the expected way and the results become type-correct.
e in AdjCN, the AP agrees to the gender of the CN, and the resulting CN
inherits it
e in DetCN, the CN agrees to the number of the Det, and the resulting NP
inherits the number and the gender from its constituents
You can select the constituent order in any way you want. It differs between
languages even when the agreement structure remains the same.
Here are some examples from Latin, using the same word order as English
(which is possible in Latin although not always the best choice):

e omnis altus mons ”every high mountain” (singular, masculine, nomina-
tive)

e omni alto monte ”every high mountain” (singular, masculine, ablative)

e omne altum castellum ”every high castle” (singular, neuter, nominative)

e tres alti montes ”three high mountains” (plural, masculine, nominative)

Question 4

The formal language
{a"b"c" |n=0,1,2,...}

consists of strings of a’s, b’s and ¢’s, in this order, and an equal number of each.
Thus the following strings belong to the language:

abc
aabbcc
aaabbbccec

and so on for any number n. Also the empty string is included (with n=0).
But the following do not:

aabcc
bbaacc

This language is known to be non-context-free. Therefore, it is impossible
to write a context-free grammar that covers it exactly. But GF is stronger than
context-free, and it is easy to write a GF grammar for it.

Your task is hence to write a GF grammar (abstract and concrete syntax)
for this language.

Hint: use discontinuous constituents.

