GF as a programming language

partly inspired of Herbert Lange’s
“GF for Python programmers”

Arianna Masciolini
LT2214 Computational Syntax

From the GF website

What is GF?

GF, Grammatical Framework, is a programming language for multilingual grammar applications. It is

« a special-purpose language for grammars, like YACC, Bison, Happy, BNFC, but not restricted to

programming languages
@a functional programming language, like Haskell, Lisp, OCaml, SML, Scheme, but specialized to

grammar writing

« a development platform for natural language grammars, like LKB, XLE, Regulus, but based on
functional programming and type theory

« a categorial grammar formalism, like ACG, CCG, but specialized for multilingual grammars,

« alogical framework, like Agda, Coq, Isabelle, but equipped with concrete syntax in addition to logic

« a platform for machine translation, like Moses, Apertium, but based on deep structural analysis (and
usually applied for limited fragments of language).

2/22

Python vs GF

Python

GF

applicability
paradigm
typing
documentation

general-purpose

mostly procedural
duck-dynamic

almost overly abundant

domain-specific
functional

static

sparse but high-quality

3/22

Striking syntactic differences

Python GF
comments start with # start with —-
separators tabs and newlines {} and ;
operators :, [], + => ! +and ++
function application f(pl, p2, ..., pn) f pl p2 ... pn

(more on “functions” in the next slides)

4/22

Functions, 1ins and opers

2 GF constructs that resemble Python functions:

= linearization rules (1ins), which specify how ASTs are
linearized
= operations (opers), general-purpose “functions”

5/22

Operator definition (GF)

smartNoun : Str -> Noun = \sg -> case sg of {
B + ("S" | "ch" | "Sh") => mkNoun Sg (Sg + Hesll) ;
_ + (nayn | ueyn | "Oy" | ||uyu) => regNoun Sg ;
x + "y" => mkNoun sg (x + "ies") ;
_ => regNoun sg

s
(example from lecture 3, module MorphologyEng)

6/22

Function definition (Python)

def smart_noun(sg):

if sg.endswith("s") or sg.endswith('"ch") or ...:
return mk_noun(sg, sg + "es")

else if sg.endswith("ay") or sg.endswith("ey") or ...:
return reg_noun(sg)

else if sg.endswith("y"):
x = sgl:-1]
return mk_noun(sg, x + "ies")

else:
return reg_noun(sg)

7/22

= in Python, x = expr creates a variable named x
= in GF, there are no variables (that vary), but you can name
the result of an expression using the let...in syntax

irregVerb : (inf,past,pastpart : Str) -> Verb =
\inf,past,pastpart ->
let verb = smartVerb inf
in mkVerb inf (verb.s ! PresSg3) past ... ;

(example from lab 1, module MicroResEng)

8/22

Duck typing

If It Can Swim And Lay Eggs It's A Duck

Everything Has An Inner Duck

NOT REILLY A Goose

“If it walks like a duck and it quacks like a duck, it must be a duck”

9/22

Typesin Python

>>>
>>>
>>>
>>>
>>>
>>>

duck typing
dynamic typing (=type checking at runtime)
type inference (+ optional type annotations)

duck = Duck()

person = Person()
duck.walk() # ok
duck.quack() # ok
person.walk() # also ok
person.quack()

AttributeError: 'Person' object has no attribute
'quack'’

10/22

Typesin GF

Almost the opposite of Python:

static typing
limited type inference, lots of type declarations
= abstract modules are 100% made of type declarations

11/22

A simple example abstract

abstract Simple = {
cat S ; NP ; VP ;
fun PredVP : NP -> VP -> S ;

= cat CatName declares a new grammatical category called

CatName
= fun funName : Catl -> Cat2 -> ... -> CatN -> CatX
is the type signature of a function funName:
= Catl -> Cat2 -> ... —> CatN are parameter types
CatX is funName's return type

12/22

A simpl(istic) example concrete

In the simplest case, everything becomes a string:

concrete SimpleEng of Simple = {
lincat S, NP, VP = Str ;
1lin PredVP np vp = np ++ vp ;

}
So, if np = "the cat" and vp = "sees us",

> 1 PredVP np vp
the cat sees us

13/22

What about resource modules?

-

reusable collections of opers and params

can be opened (~ imported) in concrete modules
in practice, MicroResLan is where you will implement
most of your Language's morphology

14/22

Custom types

In Python:

= everything is an object
= new types of objects are:
* defined via class definitions
* instantiated by calling their constructors

In GF:

= grammatical categories are:
» defined by cat + lincat pairs
* instantiated through lins
= inflectional parameters are defined as algebraic data
types and used in tables

15/22

Parameters

-- exzample params for NPs in romance languages
-— + N 2f Romanian

param Gender = M | F ;
param Number = Sg | Pl ;
param Agreement = Agr Gender Number ;

16/22

Tables

n
-~
"
u
"
u

m

usually represent inflection tables

similar to Python dictionaries, but total

created with table { foo => bar } (cf. Python's
{foo: bar})

table cells are accessed with table ! key (cf. Python's
dict [key])

17/22

Tables - example

-- table for the Sicilian noun "boy"
table {

Sg => "picciriddu" ;

P1 => "picciriddi"

s

18/22

Records

mE EE Em

usually used to keep track of subparts of phrases and
inherent features

similar to Python objects

created with { foo = bar }

record fields are accessed with record.key

19/22

Records - example

-= lincat for mouns suitable for Romance languages
lincat Noun = {

s : Number => Str;

g : Gender
I

-- record for the Sicilian noun "boy"

{
s = table {
Sg => "picciriddu" ;
P1 => "picciriddi"

20/22

Computational Grammar
An Interlingual Perspectiv

\

\Grammatical Framework

Programming with
Multilingual Grammars

\

Aarne Ranta

21/22

Online material

official basic tutorial (grammaticalframework.org/
doc/tutorial/gf-tutorial.html)

original “GF for Python programmers” tutorial
(daherb.github.io/GF-for-Python-programmers
/Tutorial.html)

GF programming reference manual
(grammaticalframework.org/doc/gf-refman.html)
shell reference (grammaticalframework.org/doc/
gf-shell-reference.html)

Inari's blog (inariksit.github.io/blog)

Discord server (discord.gg/EvfUsjzmaz)
StackOverflow (#gf tag)

22/22

grammaticalframework.org/doc/tutorial/gf-tutorial.html
grammaticalframework.org/doc/tutorial/gf-tutorial.html
daherb.github.io/GF-for-Python-programmers/Tutorial.html
daherb.github.io/GF-for-Python-programmers/Tutorial.html
grammaticalframework.org/doc/gf-refman.html
grammaticalframework.org/doc/gf-shell-reference.html
grammaticalframework.org/doc/gf-shell-reference.html

