
Training and evaluating
dependency parsers

(added to the course by popular demand)

Arianna Masciolini
LT2214 Computational Syntax

VT25

Today’s topic

2/29

Parsing 3/29

Parsing

A structured prediction task

Parsing 4/29

Sequence → structure, e.g.

natural language sentence → syntax tree
code → AST
argumentative essay → argumentative structure
. . .

Example (argmining)

Parsing 5/29

Språkbanken has better fika than CLASP: every fika,
someone bakes. Sure, CLASP has a better coffee machine.
On the other hand, there are more important things than
coffee. In fact, most people drink tea in the afternoon.

Example (argmining)

Parsing 6/29

From “A gentle introduction to argumentation mining” (Lindahl et al., 2022)

Syntactic parsing 7/29

Syntactic parsing

From sentence to tree

Syntactic parsing 8/29

From chapter 18 of Speech and Language Processing, (Jurafsky &
Martin, January 2024 draft):

Syntactic parsing is the task of assigning a syntactic
structure to a sentence

the structure is usually a syntax tree
two main classes of approaches:

constituency parsing (e.g. GF)
dependency parsing (e.g. UD)

Example (GF)

Syntactic parsing 9/29

MicroLang> i MicroLangEng.gf
linking ... OK

Languages: MicroLangEng
7 msec
MicroLang> p "the black cat sees us now"
PredVPS (DetCN the_Det (AdjCN (PositA black_A)
(UseN cat_N))) (AdvVP (ComplV2 see_V2 (UsePron
we_Pron)) now_Adv)

Example (GF)

Syntactic parsing 10/29

PredVPS
(DetCN

the_Det
(AdjCN (PositA black_A) (UseN cat_N))

)
(AdvVP

(ComplV2 see_V2 (UsePron we_Pron))
now_Adv

)

Example (GF)

Syntactic parsing 11/29

Dependency parsing 12/29

Dependency parsing

Example (UD)

Dependency parsing 13/29

the black cat sees us now
DET ADJ NOUN VERB PRON ADV

det

amod nsubj

root

obj

advmod

1 the _ DET _ _ 3 det _ _
2 black _ ADJ _ _ 3 amod _ _
3 cat _ NOUN _ _ 4 nsubj _ _
4 sees _ VERB _ _ 0 root _ _
5 us _ PRON _ _ 4 obj _ _
6 now _ ADV _ _ 4 advmod _ _

Two paradigms

Dependency parsing 14/29

graph-based algorithms: find the optimal tree from the
set of all possible candidate solutions (or a subset of it)
transition-based algorithms: incrementally build a tree
by solving a sequence of classification problems

Graph-based approaches

Dependency parsing 15/29

t̂ = argmax
t∈T (s)

score(s, t)

t: candidate tree
t̂: predicted tree
s: input sentence
T (s): set of candidate trees for s

Complexity

Dependency parsing 16/29

Depends on:

choice of T (upper bound: nn−1, where n is the number of
words in s)
scoring function (in the arc-factor model, the score of a
tree is the sum of the score of each edge, scored
individually by a NN)

In practice: O(n3) complexity

Transition-based approaches

Dependency parsing 17/29

trees are built through a sequence of steps, called
transitions
training requires:

a gold-standard treebank (as for graph-based approaches)
an oracle i.e. an algorithm that converts each tree into a a
gold-standard sequence of transitions

much more efficient: O(n)

Evaluation

Dependency parsing 18/29

2 main metrics:

UAS (Unlabelled Attachment Score): what’s the fraction
of nodes are attached to the correct dependency head?
LAS (Labelled Attachment Score): what’s the fraction of
nodes are attached to the correct dependency head with an
arc labelled with the correct relation type1?

1 in UD: the DEPREL column

Specifics of UD parsing 19/29

Specifics of UD parsing

Not just parsing per se

Specifics of UD parsing 20/29

UD “parsers” typically do a lot more than dependency parsing:

sentence segmentation
tokenization
lemmatization (LEMMA column)
POS tagging (UPOS + XPOS)
morphological tagging (FEATS)
. . .

Sometimes, some of these tasks are performed jointly to achieve
better performance.

Evaluation (UD-specific)

Specifics of UD parsing 21/29

Some more specific metrics:

CLAS (Content-word LAS): LAS limited to content words
MLAS (Morphology-Aware LAS): CLAS that also uses the
FEATS column
BLEX (Bi-Lexical dependency score): CLAS that also uses
the LEMMA column

Evaluation script output

Specifics of UD parsing 22/29

Metric | Precision | Recall | F1 Score | AligndAcc
-----------+-----------+-----------+-----------+-----------
Tokens | 100.00 | 100.00 | 100.00 |
Sentences | 100.00 | 100.00 | 100.00 |
Words | 100.00 | 100.00 | 100.00 |
UPOS | 98.36 | 98.36 | 98.36 | 98.36
XPOS | 100.00 | 100.00 | 100.00 | 100.00
UFeats | 100.00 | 100.00 | 100.00 | 100.00
AllTags | 98.36 | 98.36 | 98.36 | 98.36
Lemmas | 100.00 | 100.00 | 100.00 | 100.00
UAS | 92.73 | 92.73 | 92.73 | 92.73
LAS | 90.30 | 90.30 | 90.30 | 90.30
CLAS | 88.50 | 88.34 | 88.42 | 88.34
MLAS | 86.72 | 86.56 | 86.64 | 86.56
BLEX | 88.50 | 88.34 | 88.42 | 88.34

Three generations of parsers

Specifics of UD parsing 23/29

(all transition-based)

1. MaltParser (Nivre et al. 2006): “classic” transition-based
parser, data-driven but not NN-based

2. UDPipe: neural parser, personal favorite
v1 (Straka et al. 2016): fast, solid software, easy to install
and available anywhere
v2 (Straka et al. 2018): much better results but slower
and only available through an API/via the web GUI

3. MaChAmp (van der Goot et al. 2021): transformer-based
toolkit for multi-task learning, works on all CoNNL-like
data, close to the SOTA, relatively easy to install and train

MaChAmp config example

Specifics of UD parsing 24/29

{"compsyn": {
"train_data_path": "PATH-TO-YOUR-TRAIN-SPLIT",
"dev_data_path": "PATH-TO-YOUR-DEV-SPLIT",
"word_idx": 1,
"tasks": {

"upos": {
"task_type": "seq",
"column_idx": 3

},
"dependency": {

"task_type": "dependency",
"column_idx": 6}}}}

Your task (lab 3)

Specifics of UD parsing 25/29

1. annotate a small treebank for your language of choice
(started yesterday)

2. train a parser-tagger on a reference UD treebank
(tomorrow, or maybe even today: installation)

3. evaluate it on your treebank

To learn more 26/29

To learn more

Main sources

To learn more 27/29

chapters 18-19 of the January 2024 draft of Speech and
Language Processing (Jurafsky & Martin) (full text
available here)
unit 3-2 of Johansson & Kuhlmann’s course “Deep
Learning for Natural Language Processing” (slides and
videos__)
section 10.9.2 on parser evaluation from Aarne’s course
notes (on Canvas)

https://web.stanford.edu/~jurafsky/slp3/
https://liu-nlp.ai/dl4nlp/modules/module3/
https://liu-nlp.ai/dl4nlp/modules/module3/

Papers describing the parsers

To learn more 28/29

MaltParser: A Data-Driven Parser-Generator for
Dependency Parsing (Nivre et al. 2006) (PDF)
UDPipe: Trainable Pipeline for Processing CoNLL-U Files
Performing Tokenization, Morphological Analysis, POS
Tagging and Parsing (Straka et al. 2016) (PDF)
UDPipe 2.0 Prototype at CoNLL 2018 UD Shared Task
(Straka et al. 2018) (PDF)
Massive Choice, Ample Tasks (MACHAMP): A Toolkit for
Multi-task Learning in NLP (van der Goot et al., 2021)
(PDF)

http://lrec-conf.org/proceedings/lrec2006/pdf/162_pdf.pdf
https://aclanthology.org/L16-1680.pdf
https://aclanthology.org/K18-2020.pdf
https://arxiv.org/pdf/2005.14672

CSE courses you may like

To learn more 29/29

1. DIT231 Programming language technology
build a complete compiler

2. DIT301 Compiler construction
the hardcore version of 1.
build another compiler and optimize it

3. DIT247 Machine learning for NLP (?)
has a module on dependency parsing similar to the one in
“Deep Learning for Natural Language Processing”

https://www.gu.se/en/study-gothenburg/programming-language-technology-dit231
https://www.gu.se/en/study-gothenburg/compiler-construction-dit301

	Parsing
	Syntactic parsing
	Dependency parsing
	Specifics of UD parsing
	To learn more

