Training and evaluating
dependency parsers

(added to the course by popular demand)

Arianna Masciolini
LT2214 Computational Syntax

Today’s topic

Syntactic
parsing

2/29

Parsing 3/29

A structured prediction task

Sequence — structure, e.g.

"

natural language sentence — syntax tree
code — AST
argumentative essay — argumentative structure

mE mE mm

Parsing 4/29

Example (argmining)

Sprakbanken has better fika than CLASP: every fika,
someone bakes. Sure, CLASP has a better coffee machine.
On the other hand, there are more important things than
coffee. In fact, most people drink tea in the afternoon.

Parsing 5/29

Example (argmining)

‘ most people drink tea in the afternoon

there are more important things than coffee

at every Sprakbanken fika, someone bakes CLASP has a better coffee machine

‘ Sprakbanken has better fika than CLASP ‘

From “A gentle introduction to argumentation mining” (Lindahl et al., 2022)

Parsing 6/29

Syntactic parsing

Syntactic parsing 7/29

From sentence to tree

From chapter 18 of Speech and Language Processing, (Jurafsky &
Martin, January 2024 draft):

Syntactic parsing is the task of assigning a syntactic
structure to a sentence

= the structure is usually a syntax tree
= two main classes of approaches:

= constituency parsing (e.g. GF)

= dependency parsing (e.g. UD)

Syntactic parsing 8/29

Example (GF)

MicrolLang> i MicrolLangEng.gf
linking ... OK

Languages: MicroLangEng

7 msec

MicroLang> p "the black cat sees us now"
PredVPS (DetCN the_Det (AdjCN (PositA black_A)
(UseN cat_N))) (AdvVP (ComplV2 see_V2 (UsePron
we_Pron)) now_Adv)

Syntactic parsing 9/29

Example (GF)

PredVPS
(DetCN
the_Det
(AdjCN (PositA black_A) (UseN cat_N))
)
(AdvVP
(ComplV2 see_V2 (UsePron we_Pron))
now_Adv

Syntactic parsing 10/29

Example (GF)

PredVPS
DetCN AdvVP

e AN

the_Det ModCN ComplV2 now_Adv

B IN

PositA UseN see_V2 UsePron

| |

black_A cat_ N we_Pron

Syntactic parsing 11/29

Dependency parsing

Dependency parsing 12/29

Example (UD)

root

det advmod
amo nsubj obj
AR
DET ADJ NOUN VERB PRON ADV
the black cat sees us now
1 the _ DET _ _ 3 det _ _
2 black _ ADJ _ _ 3 amod _
3 cat _ NOUN _ _ 4 nsubj _
4 sees VERB _ _ 0 root _
5 us _ PRON _ _ 4 obj _ _
6 now ADV 4 advmod

Dependency parsing

13/29

Two paradigms

= graph-based algorithms: find the optimal tree from the
set of all possible candidate solutions (or a subset of it)

= transition-based algorithms: incrementally build a tree

by solving a sequence of classification problems

Dependency parsing 14/29

Graph-based approaches

t = argmax score(s, t)

teT(s)
= t: candidate tree
» t: predicted tree
= s: input sentence
= T(s): set of candidate trees for s

Dependency parsing 15/29

Complexity

Depends on:

2 choice of T (upper bound: n"~!, where n is the number of
words in s)

= scoring function (in the arc-factor model, the score of a
tree is the sum of the score of each edge, scored
individually by a NN)

In practice: O(n3) complexity

Dependency parsing 16/29

Transition-based approaches

= trees are built through a sequence of steps, called
transitions
= training requires:
» a gold-standard treebank (as for graph-based approaches)
» an oracle i.e. an algorithm that converts each tree into a a
gold-standard sequence of transitions
much more efficient: O(n)

m

Dependency parsing 17/29

Evaluation

2 main metrics:

= UAS (Unlabelled Attachment Score): what's the fraction
of nodes are attached to the correct dependency head?

= LAS (Labelled Attachment Score): what's the fraction of
nodes are attached to the correct dependency head with an
arc labelled with the correct relation type'?

1in UD: the DEPREL column

Dependency parsing 18/29

Specifics of UD parsing

Specifics of UD parsing 19/29

Not just parsing per se

UD “parsers” typically do a lot more than dependency parsing:

sentence segmentation
tokenization

lemmatization (LEMMA column)
POS tagging (UPOS + XPOS)
morphological tagging (FEATS)

E EE EE EE

AT

Sometimes, some of these tasks are performed jointly to achieve
better performance.

Specifics of UD parsing 20/29

Evaluation (UD-specific)

Some more specific metrics:

CLAS (Content-word LAS): LAS limited to content words
MLAS (Morphology-Aware LAS): CLAS that also uses the
FEATS column

BLEX (Bi-Lexical dependency score): CLAS that also uses
the LEMMA column

nE mm

s

Specifics of UD parsing 21/29

Evaluation script output

| | | |

+ + + +
Tokens | 100.00 | 100.00 | 100.00 |
Sentences | 100.00 | 100.00 | 100.00 |
Words | 100.00 | 100.00 | 100.00 |
UPOS | 98.36 | 98.36 | 98.36 |
XPOS | 100.00 | 100.00 | 100.00 |
UFeats | 100.00 | 100.00 | 100.00 |
Al1Tags | 98.36 | 98.36 | 98.36 |
Lemmas | 100.00 | 100.00 | 100.00 |
UAS | 92.73 | 92.73 | 92.73 |
LAS | 90.30 | 90.30 | 90.30 |
CLAS I 88.50 | 88.34 | 88.42 |
MLAS | 86.72 | 86.56 | 86.64 |
BLEX | 88.50 | 88.34 | 88.42 |

Specifics of UD parsing

98.
100.
100.

98.
100.

92.

90.

88.

86.

88.

36
00
00
36
00
73
30
34
56
34

22/29

Three generations of parsers

(all transition-based)

1. MaltParser (Nivre et al. 2006): “classic” transition-based
parser, data-driven but not NN-based
2. UDPipe: neural parser, personal favorite
= vl (Straka et al. 2016): fast, solid software, easy to install
and available anywhere
= v2 (Straka et al. 2018): much better results but slower
and only available through an API/via the web GUI
3. MaChAmp (van der Goot et al. 2021): transformer-based
toolkit for multi-task learning, works on all CoNNL-like
data, close to the SOTA, relatively easy to install and train

Specifics of UD parsing

23/29

MaChAmp config example

{"compsyn": {
"train_data_path": "PATH-TO-YOUR-TRAIN-SPLIT",
"dev_data_path": "PATH-TO-YOUR-DEV-SPLIT",
"word_idx": 1,
"tasks": {
"upos": {
"task_type": '"seq",
"column_idx": 3
3,
"dependency": {
"task_type": "dependency",
"column_idx": 6}}}}

Specifics of UD parsing 24/29
aGSGSTGTTETLELEREE

Your task (lab 3)

1. annotate a small treebank for your language of choice

(started yesterday)
2. train a parser-tagger on a reference UD treebank

(tomorrow, or maybe even today: installation)
3. evaluate it on your treebank

Specifics of UD parsing 25/29

To learn more

To learn more 26/29

Main sources

= chapters 18-19 of the January 2024 draft of Speech and
Language Processing (Jurafsky & Martin) (full text
available here)

= unit 3-2 of Johansson & Kuhlmann's course “Deep
Learning for Natural Language Processing” (slides and
videos__)

= section 10.9.2 on parser evaluation from Aarne’s course
notes (on Canvas)

To learn more 27/29

https://web.stanford.edu/~jurafsky/slp3/
https://liu-nlp.ai/dl4nlp/modules/module3/
https://liu-nlp.ai/dl4nlp/modules/module3/

= MaltParser: A Data-Driven Parser-Generator for
Dependency Parsing (Nivre et al. 2006) (PDF)

= UDPipe: Trainable Pipeline for Processing CoNLL-U Files
Performing Tokenization, Morphological Analysis, POS
Tagging and Parsing (Straka et al. 2016) (PDF)

= UDPipe 2.0 Prototype at CoNLL 2018 UD Shared Task
(Straka et al. 2018) (PDF)

= Massive Choice, Ample Tasks (MACHAMP): A Toolkit for

Multi-task Learning in NLP (van der Goot et al., 2021)

(PDF)

To learn more 28/29

http://lrec-conf.org/proceedings/lrec2006/pdf/162_pdf.pdf
https://aclanthology.org/L16-1680.pdf
https://aclanthology.org/K18-2020.pdf
https://arxiv.org/pdf/2005.14672

CSE courses you may like

1. DIT231 Programming language technology
build a complete compiler
2. DIT301 Compiler construction
* the hardcore version of 1.
build another compiler and optimize it
3. DIT247 Machine learning for NLP (?)
* has a module on dependency parsing similar to the one in
“Deep Learning for Natural Language Processing”

To learn more 29/29

https://www.gu.se/en/study-gothenburg/programming-language-technology-dit231
https://www.gu.se/en/study-gothenburg/compiler-construction-dit301

	Parsing
	Syntactic parsing
	Dependency parsing
	Specifics of UD parsing
	To learn more

