add courses and refactor sources

This commit is contained in:
Arianna Masciolini
2025-05-20 13:12:09 +02:00
parent 9c38294cab
commit e599b95786
2 changed files with 16 additions and 7 deletions

View File

@@ -196,15 +196,24 @@ BLEX | 88.50 | 88.34 | 88.42 | 88.34
2. __train a parser-tagger on a reference UD treebank__ (tomorrow, or maybe even today: installation)
3. evaluate it on your treebank
# Sources/further reading
# To learn more
## Main sources
- chapters 18-19 of the January 2024 draft of _Speech and Language Processing_ (Jurafsky & Martin) (full text available [__here__](https://web.stanford.edu/~jurafsky/slp3/))
- unit 3-2 of Johansson & Kuhlmann's course "Deep Learning for Natural Language Processing" (slides and videos available __[__here__](https://liu-nlp.ai/dl4nlp/modules/module3/)__)
- section 10.9.2 on parser evaluation from Aarne's course notes (on Canvas or [__here__](https://www.cse.chalmers.se/~aarne/grammarbook.pdf))
- unit 3-2 of Johansson & Kuhlmann's course "Deep Learning for Natural Language Processing" ([__slides and videos__](https://liu-nlp.ai/dl4nlp/modules/module3/)__)
- section 10.9.2 on parser evaluation from Aarne's course notes (on Canvas)
## Papers describing the parsers
- _MaltParser: A Data-Driven Parser-Generator for Dependency Parsing_ (Nivre et al. 2006) (PDF [__here__](http://lrec-conf.org/proceedings/lrec2006/pdf/162_pdf.pdf))
- _UDPipe: Trainable Pipeline for Processing CoNLL-U Files Performing Tokenization, Morphological Analysis, POS Tagging and Parsing_ (Straka et al. 2016) (PDF [__here__](https://aclanthology.org/L16-1680.pdf))
- _UDPipe 2.0 Prototype at CoNLL 2018 UD Shared Task_ (Straka et al. 2018) (PDF [__here__](https://aclanthology.org/K18-2020.pdf))
- _Massive Choice, Ample Tasks (MACHAMP): A Toolkit for Multi-task Learning in NLP_ (van der Goot et al., 2021) (PDF [__here__](https://arxiv.org/pdf/2005.14672))
- _MaltParser: A Data-Driven Parser-Generator for Dependency Parsing_ (Nivre et al. 2006) ([__PDF__](http://lrec-conf.org/proceedings/lrec2006/pdf/162_pdf.pdf))
- _UDPipe: Trainable Pipeline for Processing CoNLL-U Files Performing Tokenization, Morphological Analysis, POS Tagging and Parsing_ (Straka et al. 2016) ([__PDF__](https://aclanthology.org/L16-1680.pdf))
- _UDPipe 2.0 Prototype at CoNLL 2018 UD Shared Task_ (Straka et al. 2018) ([__PDF__](https://aclanthology.org/K18-2020.pdf))
- _Massive Choice, Ample Tasks (MACHAMP): A Toolkit for Multi-task Learning in NLP_ (van der Goot et al., 2021) ([__PDF__](https://arxiv.org/pdf/2005.14672))
## CSE courses you may like
1. [DIT231](https://www.gu.se/en/study-gothenburg/programming-language-technology-dit231) Programming language technology
- build a complete compiler
2. [DIT301](https://www.gu.se/en/study-gothenburg/compiler-construction-dit301) Compiler construction
- the hardcore version of 1.
- build another compiler _and optimize it_
3. DIT247 Machine learning for NLP (?)
- has a module on dependency parsing similar to the one in "Deep Learning for Natural Language Processing"

Binary file not shown.