
GF as a programming language
partly inspired of Herbert Lange’s

“GF for Python programmers”

Arianna Masciolini
LT2214 Computational Syntax

VT25

From the GF website

2/22

Python vs GF

3/22

Python GF

applicability general-purpose domain-specific
paradigm mostly procedural functional

typing duck-dynamic static
documentation almost overly abundant sparse but high-quality

Striking syntactic differences

4/22

Python GF

comments start with # start with --
separators tabs and newlines {} and ;
operators :, [], + =>, !, + and ++

function application f(p1, p2, ..., pn) f p1 p2 ... pn

(more on “functions” in the next slides)

Functions, lins and opers

5/22

2 GF constructs that resemble Python functions:

linearization rules (lins), which specify how ASTs are
linearized
operations (opers), general-purpose “functions”

Operator definition (GF)

6/22

smartNoun : Str -> Noun = \sg -> case sg of {
_ + ("s" | "ch" | "sh") => mkNoun sg (sg + "es") ;
_ + ("ay" | "ey" | "oy" | "uy") => regNoun sg ;
x + "y" => mkNoun sg (x + "ies") ;
_ => regNoun sg

} ;

(example from lecture 3, module MorphologyEng)

Function definition (Python)

7/22

def smart_noun(sg):
if sg.endswith("s") or sg.endswith("ch") or ...:

return mk_noun(sg, sg + "es")
else if sg.endswith("ay") or sg.endswith("ey") or ...:

return reg_noun(sg)
else if sg.endswith("y"):

x = sg[:-1]
return mk_noun(sg, x + "ies")

else:
return reg_noun(sg)

Variables

8/22

in Python, x = expr creates a variable named x
in GF, there are no variables (that vary), but you can name
the result of an expression using the let...in syntax

irregVerb : (inf,past,pastpart : Str) -> Verb =
\inf,past,pastpart ->

let verb = smartVerb inf
in mkVerb inf (verb.s ! PresSg3) past ... ;

(example from lab 1, module MicroResEng)

Duck typing

9/22

“If it walks like a duck and it quacks like a duck, it must be a duck”

Types in Python

10/22

duck typing
dynamic typing (=type checking at runtime)
type inference (+ optional type annotations)

>>> duck = Duck()
>>> person = Person()
>>> duck.walk() # ok
>>> duck.quack() # ok
>>> person.walk() # also ok
>>> person.quack()
AttributeError: 'Person' object has no attribute
'quack'

Types in GF

11/22

Almost the opposite of Python:

static typing
limited type inference, lots of type declarations

abstract modules are 100% made of type declarations

A simple example abstract

12/22

abstract Simple = {
cat S ; NP ; VP ;
fun PredVP : NP -> VP -> S ;

}

cat CatName declares a new grammatical category called
CatName
fun funName : Cat1 -> Cat2 -> ... -> CatN -> CatX
is the type signature of a function funName:

Cat1 -> Cat2 -> ... -> CatN are parameter types
CatX is funName’s return type

A simpl(istic) example concrete

13/22

In the simplest case, everything becomes a string:

concrete SimpleEng of Simple = {
lincat S, NP, VP = Str ;
lin PredVP np vp = np ++ vp ;

}

So, if np = "the cat" and vp = "sees us",

> l sent np vp
the cat sees us

What about resource modules?

14/22

reusable collections of opers and params
can be opened (~ imported) in concrete modules
in practice, MicroResLan is where you will implement
most of your Language’s morphology

Custom types

15/22

In Python:

everything is an object
new types of objects are:

defined via class definitions
instantiated by calling their constructors

In GF:

grammatical categories are:
defined by cat + lincat pairs
instantiated through lins

inflectional parameters are defined as algebraic data
types and used in tables

Parameters

16/22

-- example params for NPs in romance languages
param Gender = M | F ; -- + N if Romanian
param Number = Sg | Pl ;
param Agreement = Agr Gender Number ;

Tables

17/22

usually represent inflection tables
similar to Python dictionaries, but total
created with table { foo => bar } (cf. Python’s
{foo: bar})
table cells are accessed with table ! key (cf. Python’s
dict[key])

Tables - example

18/22

-- table for the Sicilian noun "boy"
table {

Sg => "picciriddu" ;
Pl => "picciriddi"

} ;

Records

19/22

usually used to keep track of subparts of phrases and
inherent features
similar to Python objects
created with { foo = bar }
record fields are accessed with record.key

Records - example

20/22

-- lincat for nouns suitable for Romance languages
lincat Noun = {

s : Number => Str;
g : Gender

} ;

-- record for the Sicilian noun "boy"
{

s = table {
Sg => "picciriddu" ;
Pl => "picciriddi"

} ;
g = M

} ;

Books

21/22

Online material

22/22

official basic tutorial (grammaticalframework.org/
doc/tutorial/gf-tutorial.html)
original “GF for Python programmers” tutorial
(daherb.github.io/GF-for-Python-programmers
/Tutorial.html)
GF programming reference manual
(grammaticalframework.org/doc/gf-refman.html)
shell reference (grammaticalframework.org/doc/
gf-shell-reference.html)
Inari’s blog (inariksit.github.io/blog)
Discord server (discord.gg/EvfUsjzmaz)
StackOverflow (#gf tag)

grammaticalframework.org/doc/tutorial/gf-tutorial.html
grammaticalframework.org/doc/tutorial/gf-tutorial.html
daherb.github.io/GF-for-Python-programmers/Tutorial.html
daherb.github.io/GF-for-Python-programmers/Tutorial.html
grammaticalframework.org/doc/gf-refman.html
grammaticalframework.org/doc/gf-shell-reference.html
grammaticalframework.org/doc/gf-shell-reference.html

