type-checker and working visualiser

This commit is contained in:
crumbtoo
2024-03-18 10:27:06 -06:00
parent e3d7c49370
commit 3bc9dbb431
6 changed files with 211 additions and 69 deletions

View File

@@ -1,13 +1,15 @@
{-# LANGUAGE ParallelListComp #-}
{-# LANGUAGE PartialTypeSignatures #-}
{-# LANGUAGE OverloadedLists #-}
{-# LANGUAGE TemplateHaskell #-}
module Rlp.HindleyMilner
( typeCheckRlpProgR
, solve
, annotate
, TypeError(..)
, runHM'
, HM
, prettyVars
, prettyVars'
)
where
--------------------------------------------------------------------------------
@@ -19,7 +21,10 @@ import Control.Monad.Accum
import Control.Monad
import Control.Arrow ((>>>))
import Control.Monad.Writer.Strict
import Data.List
import Data.Monoid
import Data.Text qualified as T
import Data.Foldable (fold)
import Data.Function
import Data.Pretty hiding (annotate)
import Data.Hashable
@@ -30,9 +35,10 @@ import Data.HashSet qualified as S
import Data.Maybe (fromMaybe)
import Data.Traversable
import GHC.Generics (Generic(..), Generically(..))
import Debug.Trace
import Data.Functor
import Data.Functor.Foldable
import Data.Functor.Foldable hiding (fold)
import Data.Fix hiding (cata, para)
import Control.Comonad.Cofree
import Control.Comonad
@@ -125,24 +131,80 @@ unify (Equality s (VarT t) : cs) = unify (Equality (VarT t) s : cs)
unify (Equality s t : _) = addFatal $ TyErrCouldNotUnify s t
unify' :: [Constraint] -> HM [(PsName, Type PsName)]
unify' [] = pure mempty
unify' (Equality (sx :-> sy) (tx :-> ty) : cs) =
unify' $ Equality sx tx : Equality sy ty : cs
-- elim
unify' (Equality (ConT s) (ConT t) : cs) | s == t = unify' cs
unify' (Equality (VarT s) (VarT t) : cs) | s == t = unify' cs
unify' (Equality (VarT s) t : cs)
| occurs s t = addFatal $ TyErrRecursiveType s t
| otherwise = unify' cs' <&> ((s,t):)
where
cs' = cs & each . constraintTypes %~ subst s t
-- swap
unify' (Equality s (VarT t) : cs) = unify' (Equality (VarT t) s : cs)
unify' (Equality s t : _) = addFatal $ TyErrCouldNotUnify s t
annotate :: RlpExpr PsName
-> HM (Cofree (RlpExprF PsName) (Type PsName, PartialJudgement))
annotate = sequenceA . fixtend (gather . wrapFix)
infer1 :: RlpExpr PsName -> HM (Type PsName)
infer1 = infer1' mempty
-- infer1 :: RlpExpr PsName -> HM (Type PsName)
-- infer1 = infer1' mempty
infer1' :: Context -> RlpExpr PsName -> HM (Type PsName)
infer1' g1 e = do
((t,j) :< _) <- annotate e
g2 <- unify (j ^. constraints)
g <- unionContextWithKeyM unifyTypes g1 g2
pure $ ifoldrOf (contextVars . itraversed) subst t g
-- infer1' :: Context -> RlpExpr PsName -> HM (Type PsName)
-- infer1' g1 e = do
-- ((t,j) :< _) <- annotate e
-- g2 <- unify (j ^. constraints)
-- g <- unionContextWithKeyM unifyTypes g1 g2
-- pure $ ifoldrOf (contextVars . itraversed) subst t g
-- where
-- -- intuitively, we'd return mgu(s,t) but the union is left-biased making `s`
-- -- the user-specified type: prioritise her.
-- unifyTypes _ s t = unify [Equality s t] $> s
assocs :: IndexedTraversal k [(k,v)] [(k,v')] v v'
assocs f [] = pure []
assocs f ((k,v):xs) = (\v' xs' -> (k,v') : xs')
<$> indexed f k v <*> assocs f xs
traceSubst k v t = trace ("subst " <> show' k <> " " <> show' v <> " " <> show' t)
$ subst k v t
where show' a = showsPrec 11 a mempty
infer :: Context -> RlpExpr PsName
-> HM (Cofree (RlpExprF PsName) (Type PsName))
infer g1 e = do
e' <- annotate e
g2 <- unify' $ concatOf (folded . _2 . constraints) e'
traceM $ "e': " <> show (view _1 <$> e')
traceM $ "g2: " <> show g2
let sub t = ifoldrOf (reversed . assocs) traceSubst t g2
pure $ sub . view _1 <$> e'
where
-- intuitively, we'd return mgu(s,t) but the union is left-biased making `s`
-- the user-specified type: prioritise her.
unifyTypes _ s t = unify [Equality s t] $> s
e :: Cofree (RlpExprF PsName) (Type PsName)
e = AppT (AppT FunT (VarT "$a2")) (AppT (AppT FunT (VarT "$a3")) (VarT "$a4")) :< InL (LamF ["f","x"] (VarT "$a4" :< InL (AppF (VarT "$a5" :< InL (VarF "f")) (VarT "$a6" :< InL (AppF (VarT "$a5" :< InL (VarF "f")) (VarT "$a1" :< InL (VarF "x")))))))
g = Context
{ _contextVars = H.fromList
[("$a1",VarT "$a6")
,("$a3",VarT "$a4")
,("$a2",AppT (AppT FunT (VarT "$a4")) (VarT "$a4"))
,("$a5",AppT (AppT FunT (VarT "$a1")) (VarT "$a6"))
,("$a6",VarT "$a4")]}
unionContextWithKeyM :: Monad m
=> (PsName -> Type PsName -> Type PsName
-> m (Type PsName))
@@ -161,12 +223,12 @@ unionWithKeyM f a b = sequenceA $ H.unionWithKey f' ma mb
ma = fmap (pure @m) a
mb = fmap (pure @m) b
solve :: RlpExpr PsName -> HM (Cofree (RlpExprF PsName) (Type PsName))
solve = solve' mempty
-- solve :: RlpExpr PsName -> HM (Cofree (RlpExprF PsName) (Type PsName))
-- solve = solve' mempty
solve' :: Context -> RlpExpr PsName
-> HM (Cofree (RlpExprF PsName) (Type PsName))
solve' g e = sequenceA $ fixtend (infer1' g . wrapFix) e
-- solve' :: Context -> RlpExpr PsName
-- -> HM (Cofree (RlpExprF PsName) (Type PsName))
-- solve' g = sequenceA . fixtend (infer1' g . wrapFix)
occurs :: PsName -> Type PsName -> Bool
occurs n = cata \case
@@ -178,7 +240,6 @@ subst n t' = para \case
VarTF m | n == m -> t'
-- shadowing
ForallTF x (pre,post) | x == n -> ForallT x pre
| otherwise -> ForallT x post
t -> embed $ t <&> view _2
prettyHM :: (Out a)
@@ -190,12 +251,12 @@ prettyHM = over (mapped . _1) rout
fixtend :: Functor f => (f (Fix f) -> b) -> Fix f -> Cofree f b
fixtend c (Fix f) = c f :< fmap (fixtend c) f
infer :: RlpExpr PsName -> HM (Cofree (RlpExprF PsName) (Type PsName))
infer = infer' mempty
-- infer :: RlpExpr PsName -> HM (Cofree (RlpExprF PsName) (Type PsName))
-- infer = infer' mempty
infer' :: Context -> RlpExpr PsName
-> HM (Cofree (RlpExprF PsName) (Type PsName))
infer' g = sequenceA . fixtend (infer1' g . wrapFix)
-- infer' :: Context -> RlpExpr PsName
-- -> HM (Cofree (RlpExprF PsName) (Type PsName))
-- infer' g = sequenceA . fixtend (infer1' g . wrapFix)
buildInitialContext :: Program PsName a -> Context
buildInitialContext =
@@ -208,7 +269,7 @@ typeCheckRlpProgR :: (Monad m)
typeCheckRlpProgR p = tc p
where
g = buildInitialContext p
tc = liftHM . traverse (solve' g) . etaExpandAll
tc = liftHM . traverse (infer g) . etaExpandAll
etaExpandAll = programDecls . each %~ etaExpand
etaExpand :: Decl b (RlpExpr b) -> Decl b (RlpExpr b)
@@ -223,3 +284,44 @@ etaExpand a = a
liftHM :: (Monad m) => HM a -> RLPCT m a
liftHM = liftEither . runHM'
freeVariables :: Type PsName -> HashSet PsName
freeVariables = cata \case
VarTF x -> S.singleton x
ForallTF x m -> m `S.difference` S.singleton x
vs -> fold vs
boundVariables :: Type PsName -> HashSet PsName
boundVariables = cata \case
ForallTF x m -> S.singleton x <> m
vs -> fold vs
-- | rename all free variables for aesthetic purposes
prettyVars' :: Type PsName -> Type PsName
prettyVars' = join prettyVars
freeVariablesLTR :: Type PsName -> [PsName]
freeVariablesLTR = nub . cata \case
VarTF x -> [x]
ForallTF x m -> m \\ [x]
vs -> concat vs
-- | for some type, compute a substitution which will rename all free variables
-- for aesthetic purposes
prettyVars :: Type PsName -> Type PsName -> Type PsName
prettyVars root = appEndo (foldMap Endo subs)
where
alphabetNames = [ T.pack [c] | c <- ['a'..'z'] ]
names = alphabetNames \\ S.toList (boundVariables root)
subs = zipWith (\k v -> subst k (VarT v))
(freeVariablesLTR root)
names
-- test :: Type PsName -> [(PsName, PsName)]
-- test root = subs
-- where
-- alphabetNames = [ T.pack [c] | c <- ['a'..'z'] ]
-- names = alphabetNames \\ S.toList (boundVariables root)
-- subs = zip (freeVariablesLTR root) names