Files
rlp/tst/Core/HindleyMilnerSpec.hs
2024-01-24 10:14:44 -07:00

63 lines
2.2 KiB
Haskell

{-# LANGUAGE QuasiQuotes, OverloadedStrings #-}
module Core.HindleyMilnerSpec
( spec
)
where
----------------------------------------------------------------------------------
import Core.Syntax
import Core.TH (coreExpr)
import Core.HindleyMilner
import Control.Monad.Errorful
import Data.Either (isLeft)
import Test.Hspec
----------------------------------------------------------------------------------
-- TODO: more tests. preferrably property-based. lol.
spec :: Spec
spec = do
it "should infer `id 3` :: Int" $
let g = [ ("id", "a" :-> "a") ]
in infer' g [coreExpr|id 3|] `shouldBe` Right TyInt
it "should not infer `id 3` when `id` is specialised to `a -> a`" $
let g = [ ("id", ("a" :-> "a") :-> "a" :-> "a") ]
in infer' g [coreExpr|id 3|] `shouldSatisfy` isLeft
-- TODO: property-based tests for let
it "should infer `let x = 3 in id x` :: Int" $
let g = [ ("id", "a" :-> "a") ]
e = [coreExpr|let {x = 3} in id x|]
in infer' g e `shouldBe` Right TyInt
it "should infer `let x = 3; y = 2 in (+#) x y` :: Int" $
let g = [ ("+#", TyInt :-> TyInt :-> TyInt) ]
e = [coreExpr|let {x=3;y=2} in (+#) x y|]
in infer' g e `shouldBe` Right TyInt
it "should find `3 :: Bool` contradictory" $
let e = [coreExpr|3|]
in check' [] (TyCon "Bool") e `shouldSatisfy` isLeft
it "should infer `fix ((+#) 1)` :: Int" $
let g = [ ("fix", ("a" :-> "a") :-> "a")
, ("+#", TyInt :-> TyInt :-> TyInt) ]
e = [coreExpr|fix ((+#) 1)|]
in infer' g e `shouldBe` Right TyInt
it "should infer mutually recursively defined lists" $
let g = [ ("cons", TyInt :-> TyCon "IntList" :-> TyCon "IntList") ]
e :: Expr'
e = [coreExpr|letrec { as = cons 1 bs; bs = cons 2 as } in as|]
in infer' g e `shouldBe` Right (TyCon "IntList")
infer' :: Context' -> Expr' -> Either [TypeError] Type
infer' g e = case runErrorful $ infer g e of
(Just t, _) -> Right t
(Nothing, es) -> Left es
check' :: Context' -> Type -> Expr' -> Either [TypeError] ()
check' g t e = case runErrorful $ check g t e of
(Just t, _) -> Right ()
(Nothing, es) -> Left es