Files
rlp/docs/src/commentary/stg.rst
2023-11-21 21:53:57 -07:00

240 lines
4.7 KiB
ReStructuredText

The *Spineless Tagless G-Machine*
=================================
WIP. This will hopefully be expanded into a thorough walkthrough of the state
machine.
Evaluation is complete when a single :code:`NNum` remains on the stack and the
dump is empty.
.. math::
\transrule
{ a : \nillist
& \nillist
& h
\begin{bmatrix}
a : \mathtt{NNum} \; n
\end{bmatrix}
& g
}
{ \mathtt{HALT}
}
Dereference an indirection passed as an argument to a function.
.. math::
\transrule
{a : s & d & h
\begin{bmatrix}
a : \mathtt{NAp} \; a_1 \; a_2 \\
a_2 : \mathtt{NInd} \; a_3
\end{bmatrix} & g}
{a : s & d & h[a : \mathtt{NAp} \; a_1 \; a_3] & g}
Dereference an indirection on top of the stack.
.. math::
\transrule
{p : s & d & h
\begin{bmatrix}
p : \mathtt{NInd} \; a
\end{bmatrix} & g}
{a : s & d & h & g}
Perform a unary operation :math:`o(n)` with internal :code:`Prim` constructor
:code:`O` on an argument in normal form.
.. math::
\transrule
{ f : a : s
& d
& h
\begin{bmatrix}
f : \mathtt{NPrim} \; \mathtt{O} \\
a : \mathtt{NAp} \; f \; x \\
x : \mathtt{NNum} \; n
\end{bmatrix}
& g
}
{ a : s
& d
& h
\begin{bmatrix}
a : \mathtt{NNum} \; (o(n))
\end{bmatrix}
& g
}
Evaluate the argument of a unary operation with internal :code:`Prim`
constructor :code:`O`.
.. math::
\transrule
{ f : a : \nillist
& d
& h
\begin{bmatrix}
f : \mathtt{NPrim} \; \mathtt{O} \\
a : \mathtt{NAp} \; f \; x
\end{bmatrix}
& g
}
{ x : \nillist
& (f : a : \nillist) : d
& h
& g
}
Restore the stack when a sub-computation has completed.
.. math::
\transrule
{ a : \nillist
& s : d
& h
\begin{bmatrix}
a : \mathtt{NNum} \; n
\end{bmatrix}
& g
}
{ s
& d
& h
& g
}
Reduce a supercombinator and update the root with the :math:`\beta`-reduced form
.. math::
\transrule
{ a_0 : a_1 : \ldots : a_n : s
& d
& h
\begin{bmatrix}
a_0 : \mathtt{NSupercomb} \; [x_1,\ldots,x_n] \; e
\end{bmatrix}
& g
}
{ a_n : s
& d
& h'
& g
\\
& \SetCell[c=3]{c}
\text{where } h' = \mathtt{instantiateU} \; e \; a_n \; h \; g
}
Perform a binary operation :math:`o(x,y)` associated with internal :code:`Prim`
constructor :code:`O` on two :code:`NNum` s both in normal form.
.. math::
\transrule
{ f : a_1 : a_2 : s
& d
& h
\begin{bmatrix}
f : \mathtt{NPrim} \; \mathtt{O} \\
a_1 : \mathtt{NAp} \; f \; (\mathtt{NNum} \; x) \\
a_2 : \mathtt{NAp} \; a_1 \; (\mathtt{NNum} \; y)
\end{bmatrix}
& g
}
{ a_2 : s
& d
& h
\begin{bmatrix}
a_2 : \mathtt{NNum} \; (o(x,y))
\end{bmatrix}
& g
}
In a conditional primitive, perform the reduction if the condition has been
evaluated as True (:code:`ConP 2 0`).
.. math::
\transrule
{ f : a_1 : a_2 : a_3 : s
& d
& h
\begin{bmatrix}
f : \mathtt{NPrim} \; \mathtt{IfP} \\
c : \mathtt{NPrim} \; (\mathtt{ConP} \; 2 \; 0) \\
a_1 : \mathtt{NAp} \; f \; c \\
a_2 : \mathtt{NAp} \; a_1 \; x \\
a_3 : \mathtt{NAp} \; a_2 \; y
\end{bmatrix}
& g
}
{ x : s
& d
& h
& g
}
In a conditional primitive, perform the reduction if the condition has been
evaluated as False (:code:`ConP 1 0`).
.. math::
\transrule
{ f : a_1 : a_2 : a_3 : s
& d
& h
\begin{bmatrix}
f : \mathtt{NPrim} \; \mathtt{IfP} \\
c : \mathtt{NPrim} \; (\mathtt{ConP} \; 1 \; 0) \\
a_1 : \mathtt{NAp} \; f \; c \\
a_2 : \mathtt{NAp} \; a_1 \; x \\
a_3 : \mathtt{NAp} \; a_2 \; y
\end{bmatrix}
& g
}
{ y : s
& d
& h
& g
}
In a conditional primitive, evaluate the condition.
.. math::
\transrule
{ f : a_1 : \nillist
& d
& h
\begin{bmatrix}
f : \mathtt{NPrim} \; \mathtt{IfP} \\
a_1 : \mathtt{NAp} \; f \; x
\end{bmatrix}
& g
}
{ x : \nillist
& (f : a_1 : \nillist) : d
& h
& g
}
Construct :code:`NData` out of a constructor and its arguments
.. math::
\transrule
{ c : a_1 : \ldots : a_n : \nillist
& d
& h
\begin{bmatrix}
c : \mathtt{NPrim} \; (\mathtt{ConP} \; t \; n) \\
a_1 : \mathtt{NAp} \; c \; x_1 \\
\vdots \\
a_n : \mathtt{NAp} \; a_{n-1} \; x_n
\end{bmatrix}
& g
}
{ a_n : \nillist
& d
& h
\begin{bmatrix}
a_n : \mathtt{NData} \; t \; [x_1, \ldots, x_n]
\end{bmatrix}
& g
}