Files
rlp/doc/build/html/_sources/references/gm-state-transitions.rst.txt
crumbtoo cb0de3b26b bhick
2023-12-04 19:52:35 -07:00

467 lines
8.5 KiB
ReStructuredText

================================
G-Machine State Transition Rules
================================
*********************
Core Transition Rules
*********************
#. Lookup a global by name and push its value onto the stack
.. math::
\gmrule
{ \mathtt{PushGlobal} \; f : i
& s
& d
& h
& m
\begin{bmatrix}
f : a
\end{bmatrix}
}
{ i
& a : s
& d
& h
& m
}
#. Allocate an int node on the heap, and push the address of the newly created
node onto the stack
.. math::
\gmrule
{ \mathtt{PushInt} \; n : i
& s
& d
& h
& m
}
{ i
& a : s
& d
& h
\begin{bmatrix}
a : \mathtt{NNum} \; n
\end{bmatrix}
& m
}
#. Allocate an application node on the heap, applying the top of the stack to
the address directly below it. The address of the application node is pushed
onto the stack.
.. math::
\gmrule
{ \mathtt{MkAp} : i
& f : x : s
& d
& h
& m
}
{ i
& a : s
& d
& h
\begin{bmatrix}
a : \mathtt{NAp} \; f \; x
\end{bmatrix}
& m
}
#. Push a function's argument onto the stack
.. math::
\gmrule
{ \mathtt{Push} \; n : i
& a_0 : \ldots : a_n : s
& d
& h
& m
}
{ i
& a_n : a_0 : \ldots : a_n : s
& d
& h
& m
}
#. Tidy up the stack after instantiating a supercombinator
.. math::
\gmrule
{ \mathtt{Slide} \; n : i
& a_0 : \ldots : a_n : s
& d
& h
& m
}
{ i
& a_0 : s
& d
& h
& m
}
#. If the top of the stack is in WHNF (currently this just means a number) is on
top of the stack, :code:`Unwind` considers evaluation complete. In the case
where the dump is **not** empty, the instruction queue and stack is restored
from the top.
.. math::
\gmrule
{ \mathtt{Unwind} : \nillist
& a : s
& \langle i', s' \rangle : d
& h
\begin{bmatrix}
a : \mathtt{NNum} \; n
\end{bmatrix}
& m
}
{ i'
& a : s'
& d
& h
& m
}
#. Bulding on the previous rule, in the case where the dump **is** empty, leave
the machine in a halt state (i.e. with an empty instruction queue).
.. math::
\gmrule
{ \mathtt{Unwind} : \nillist
& a : s
& \nillist
& h
\begin{bmatrix}
a : \mathtt{NNum} \; n
\end{bmatrix}
& m
}
{ \nillist
& a : s
& \nillist
& h
& m
}
#. Again, building on the previous rules, this rule makes the machine consider
unapplied supercombinators to be in WHNF
.. math::
\gmrule
{ \mathtt{Unwind} : \nillist
& a_0 : \ldots : a_n : \nillist
& \langle i, s \rangle : d
& h
\begin{bmatrix}
a_0 : \mathtt{NGlobal} \; k \; c
\end{bmatrix}
& m
}
{ i
& a_n : s
& d
& h
& m \\
\SetCell[c=2]{c}
\text{when $n < k$}
}
#. If an application is on top of the stack, :code:`Unwind` continues unwinding
.. math::
\gmrule
{ \mathtt{Unwind} : \nillist
& a : s
& d
& h
\begin{bmatrix}
a : \mathtt{NAp} \; f \; x
\end{bmatrix}
& m
}
{ \mathtt{Unwind} : \nillist
& f : a : s
& d
& h
& m
}
#. When a supercombinator is on top of the stack (and the correct number of
arguments have been provided), :code:`Unwind` sets up the stack and jumps to
the supercombinator's code (:math:`\beta`-reduction)
.. math::
\gmrule
{ \mathtt{Unwind} : \nillist
& a_0 : \ldots : a_n : s
& d
& h
\begin{bmatrix}
a_0 : \mathtt{NGlobal} \; n \; c \\
a_1 : \mathtt{NAp} \; a_0 \; e_1 \\
\vdots \\
a_n : \mathtt{NAp} \; a_{n-1} \; e_n \\
\end{bmatrix}
& m
}
{ c
& e_1 : \ldots : e_n : a_n : s
& d
& h
& m
}
#. Pop the stack, and update the nth node to point to the popped address
.. math::
\gmrule
{ \mathtt{Update} \; n : i
& e : f : a_1 : \ldots : a_n : s
& d
& h
\begin{bmatrix}
a_1 : \mathtt{NAp} \; f \; e \\
\vdots \\
a_n : \mathtt{NAp} \; a_{n-1} \; e_n
\end{bmatrix}
& m
}
{ i
& f : a_1 : \ldots : a_n : s
& d
& h
\begin{bmatrix}
a_n : \mathtt{NInd} \; e
\end{bmatrix}
& m
}
#. Pop the stack.
.. math::
\gmrule
{ \mathtt{Pop} \; n : i
& a_1 : \ldots : a_n : s
& d
& h
& m
}
{ i
& s
& d
& h
& m
}
#. Follow indirections while unwinding
.. math::
\gmrule
{ \mathtt{Unwind} : \nillist
& a : s
& d
& h
\begin{bmatrix}
a : \mathtt{NInd} \; a'
\end{bmatrix}
& m
}
{ \mathtt{Unwind} : \nillist
& a' : s
& d
& h
& m
}
#. Allocate uninitialised heap space
.. math::
\gmrule
{ \mathtt{Alloc} \; n : i
& s
& d
& h
& m
}
{ i
& a_1 : \ldots : a_n : s
& d
& h
\begin{bmatrix}
a_1 : \mathtt{NUninitialised} \\
\vdots \\
a_n : \mathtt{NUninitialised} \\
\end{bmatrix}
& m
}
#. Evaluate the top of the stack to WHNF
.. math::
\gmrule
{ \mathtt{Eval} : i
& a : s
& d
& h
& m
}
{ \mathtt{Unwind} : \nillist
& a : \nillist
& \langle i, s \rangle : d
& h
& m
}
#. Reduce a primitive binary operator :math:`*`.
.. math::
\gmrule
{ * : i
& a_1 : a_2 : s
& d
& h
\begin{bmatrix}
a_1 : x \\
a_2 : y
\end{bmatrix}
& m
}
{ i
& a' : s
& d
& h
\begin{bmatrix}
a' : (x * y)
\end{bmatrix}
& m
}
#. Reduce a primitive unary operator :math:`\neg`.
.. math::
\gmrule
{ \neg : i
& a : s
& d
& h
\begin{bmatrix}
a : x
\end{bmatrix}
& m
}
{ i
& a' : s
& d
& h
\begin{bmatrix}
a' : (\neg x)
\end{bmatrix}
& m
}
#. Pack a constructor if there are sufficient arguments
.. math::
\gmrule
{ \mathtt{Pack} \; t \; n : i
& a_1 : \ldots : a_n : s
& d
& h
& m
}
{ i
& a : s
& d
& h
\begin{bmatrix}
a : \mathtt{NConstr} \; t \; [a_1,\ldots,a_n]
\end{bmatrix}
& m
}
#. Evaluate a case
.. math::
\gmrule
{ \mathtt{CaseJump} \begin{bmatrix} t \to c \end{bmatrix} : i
& a : s
& d
& h
\begin{bmatrix}
a : \mathtt{NConstr} \; t \; v
\end{bmatrix}
& m
}
{ c \concat i
& d
& h
& m
}
***************
Extension Rules
***************
#. A sneaky trick to enable sharing of :code:`NNum` nodes. We note that the
global environment is a mapping of plain old strings to heap addresses.
Strings of digits are not considered valid identifiers, so putting them on
the global environment will never conflict with a supercombinator! We abuse
this by modifying Core Rule 2 to update the global environment with the new
node's address. Consider how this rule might impact garbage collection
(remember that the environment is intended for *globals*).
.. math::
\gmrule
{ \mathtt{PushInt} \; n : i
& s
& d
& h
& m
}
{ i
& a : s
& d
& h
\begin{bmatrix}
a : \mathtt{NNum} \; n
\end{bmatrix}
& m
\begin{bmatrix}
n' : a
\end{bmatrix}
\\
\SetCell[c=5]{c}
\text{where $n'$ is the base-10 string rep. of $n$}
}
#. In order for the previous rule to be effective, we are also required to take
action when a number already exists in the environment:
.. math::
\gmrule
{ \mathtt{PushInt} \; n : i
& s
& d
& h
& m
\begin{bmatrix}
n' : a
\end{bmatrix}
}
{ i
& a : s
& d
& h
& m
\\
\SetCell[c=5]{c}
\text{where $n'$ is the base-10 string rep. of $n$}
}