Files
rlp/src/Core/Syntax.hs
2024-04-15 10:07:20 -06:00

388 lines
12 KiB
Haskell

{-|
Module : Core.Syntax
Description : Core ASTs and the like
-}
{-# LANGUAGE PatternSynonyms, OverloadedStrings #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE TemplateHaskell #-}
-- for recursion-schemes
{-# LANGUAGE DeriveTraversable, TypeFamilies #-}
module Core.Syntax
(
-- * Core AST
ExprF(..), ExprF'
, ScDef(..), ScDef'
, Program(..), Program'
, Type(..), Kind, pattern (:->), pattern TyInt
, Alter(..), Alter', AltCon(..)
, Rec(..), Lit(..)
, Pragma(..)
-- ** Variables and identifiers
, Name, Var(..), TyCon(..), Tag
, Binding(..), pattern (:=), pattern (:$)
, type Binding'
-- ** Working with the fixed point of ExprF
, Expr, Expr'
, pattern Con, pattern Var, pattern App, pattern Lam, pattern Let
, pattern Case, pattern Type, pattern Lit
-- * Misc
, Pretty(pretty)
-- * Optics
, programScDefs, programTypeSigs, programDataTags
, formalising
, HasRHS(_rhs), HasLHS(_lhs)
, HasBinders(_binders)
)
where
----------------------------------------------------------------------------------
import Data.Coerce
import Data.Pretty
import Data.List (intersperse)
import Data.Function ((&))
import Data.String
import Data.HashMap.Strict (HashMap)
import Data.HashMap.Strict qualified as H
import Data.Hashable
import Data.Text qualified as T
import Data.Char
import Data.These
import GHC.Generics (Generic, Generically(..))
import Text.Show.Deriving
import Data.Eq.Deriving
import Data.Fix hiding (cata, ana)
import Data.Bifoldable (bifoldr)
import Data.Functor.Foldable
import Data.Functor.Foldable.TH (makeBaseFunctor)
-- Lift instances for the Core quasiquoters
import Misc.Lift1
import Control.Lens
----------------------------------------------------------------------------------
data ExprF b a = VarF Name
| ConF Tag Int -- ^ Con Tag Arity
| CaseF a [Alter b]
| LamF [b] a
| LetF Rec [Binding b] a
| AppF a a
| LitF Lit
| TypeF Type
deriving (Functor, Foldable, Traversable)
type Expr b = Fix (ExprF b)
data Type = TyFun
| TyVar Var
| TyApp Type Type
| TyCon TyCon
| TyForall Var Type
| TyKindType
| TyKindInferred
deriving (Show, Eq, Lift)
type Kind = Type
data TyCon = MkTyCon Name Kind
deriving (Eq, Show, Lift)
data Var = MkVar Name Type
deriving (Eq, Show, Lift)
instance Hashable Var where
hashWithSalt s (MkVar n _) = hashWithSalt s n
pattern Con :: Tag -> Int -> Expr b
pattern Con t a = Fix (ConF t a)
pattern Var :: Name -> Expr b
pattern Var b = Fix (VarF b)
pattern App :: Expr b -> Expr b -> Expr b
pattern App f x = Fix (AppF f x)
pattern Lam :: [b] -> Expr b -> Expr b
pattern Lam bs e = Fix (LamF bs e)
pattern Let :: Rec -> [Binding b] -> Expr b -> Expr b
pattern Let r bs e = Fix (LetF r bs e)
pattern Case :: Expr b -> [Alter b] -> Expr b
pattern Case e as = Fix (CaseF e as)
pattern Type :: Type -> Expr b
pattern Type t = Fix (TypeF t)
pattern Lit :: Lit -> Expr b
pattern Lit t = Fix (LitF t)
pattern TyInt :: Type
pattern TyInt = TyCon (MkTyCon "Int#" TyKindType)
infixr 1 :->
pattern (:->) :: Type -> Type -> Type
pattern a :-> b = TyApp (TyApp TyFun a) b
{-# COMPLETE Binding :: Binding #-}
{-# COMPLETE (:=) :: Binding #-}
data Binding b = Binding b (Expr b)
infixl 1 :=
pattern (:=) :: b -> Expr b -> Binding b
pattern k := v = Binding k v
infixl 2 :$
pattern (:$) :: Expr b -> Expr b -> Expr b
pattern f :$ x = App f x
data Alter b = Alter AltCon [b] (Expr b)
newtype Pragma = Pragma [T.Text]
data Rec = Rec
| NonRec
deriving (Show, Eq, Lift)
data AltCon = AltData Name
| AltTag Tag
| AltLit Lit
| AltDefault
deriving (Show, Eq, Lift)
newtype Lit = IntL Int
deriving (Show, Eq, Lift)
type Name = T.Text
type Tag = Int
data ScDef b = ScDef b [b] (Expr b)
unliftScDef :: ScDef b -> Expr b
unliftScDef (ScDef _ as e) = Lam as e
data Module b = Module (Maybe (Name, [Name])) (Program b)
data Program b = Program
{ _programScDefs :: [ScDef b]
, _programTypeSigs :: HashMap b Type
, _programDataTags :: HashMap Name (Tag, Int)
-- ^ map constructors to their tag and arity
}
deriving (Generic)
deriving (Semigroup, Monoid)
via Generically (Program b)
makeLenses ''Program
-- makeBaseFunctor ''Expr
pure []
-- this is a weird optic, stronger than Lens and Prism, but weaker than Iso.
programTypeSigsP :: (Hashable b) => Prism' (Program b) (HashMap b Type)
programTypeSigsP = prism
(\b -> mempty & programTypeSigs .~ b)
(Right . view programTypeSigs)
type ExprF' = ExprF Name
type Program' = Program Name
type Expr' = Expr Name
type ScDef' = ScDef Name
type Alter' = Alter Name
type Binding' = Binding Name
instance IsString (Expr b) where
fromString = Var . fromString
----------------------------------------------------------------------------------
class HasBinders s t a b | s -> a, t -> b, s b -> t, t a -> s where
_binders :: Traversal s t a b
instance HasBinders (Expr b) (Expr b') b b' where
_binders k = cata go where
go :: Applicative f => ExprF b (f (Expr b')) -> f (Expr b')
go = undefined
class HasRHS s t a b | s -> a, t -> b, s b -> t, t a -> s where
_rhs :: Lens s t a b
instance HasRHS (Alter b) (Alter b) (Expr b) (Expr b) where
_rhs = lens
(\ (Alter _ _ e) -> e)
(\ (Alter t as _) e' -> Alter t as e')
instance HasRHS (ScDef b) (ScDef b) (Expr b) (Expr b) where
_rhs = lens
(\ (ScDef _ _ e) -> e)
(\ (ScDef n as _) e' -> ScDef n as e')
instance HasRHS (Binding b) (Binding b) (Expr b) (Expr b) where
_rhs = lens
(\ (_ := e) -> e)
(\ (k := _) e' -> k := e')
class HasLHS s t a b | s -> a, t -> b, s b -> t, t a -> s where
_lhs :: Lens s t a b
instance HasLHS (Alter b) (Alter b) (AltCon, [b]) (AltCon, [b]) where
_lhs = lens
(\ (Alter a bs _) -> (a,bs))
(\ (Alter _ _ e) (a',bs') -> Alter a' bs' e)
instance HasLHS (ScDef b) (ScDef b) (b, [b]) (b, [b]) where
_lhs = lens
(\ (ScDef n as _) -> (n,as))
(\ (ScDef _ _ e) (n',as') -> ScDef n' as' e)
instance HasLHS (Binding b) (Binding b) b b where
_lhs = lens
(\ (k := _) -> k)
(\ (_ := e) k' -> k' := e)
-- | This is not a valid isomorphism for expressions containing lambdas whose
-- bodies are themselves lambdas with multiple arguments:
--
-- >>> [coreExpr|\x -> \y z -> x|] ^. from (from formalising)
-- Lam ["x"] (Lam ["y"] (Lam ["z"] (Var "x")))
-- >>> [coreExpr|\x -> \y z -> x|]
-- Lam ["x"] (Lam ["y","z"] (Var "x"))
--
-- For this reason, it's best to consider 'formalising' as if it were two
-- unrelated unidirectional getters.
formalising :: Iso (Expr a) (Expr b) (Expr a) (Expr b)
formalising = iso sa bt where
sa :: Expr a -> Expr a
sa = ana \case
Lam [b] e -> LamF [b] e
Lam (b:bs) e -> LamF [b] (Lam bs e)
x -> project x
bt :: Expr b -> Expr b
bt = cata \case
LamF [b] (Lam bs e) -> Lam (b:bs) e
x -> embed x
--------------------------------------------------------------------------------
instance (Hashable b, Pretty b) => Pretty (Program b) where
pretty p = (datatags <> "\n")
$+$ defs
where
datatags = ifoldrOf (programDataTags . ifolded) cataDataTag mempty p
defs = vlinesOf (programJoinedDefs . to prettyGroup) p
programJoinedDefs :: Fold (Program b) (These (b, Type) (ScDef b))
programJoinedDefs = folding $ \p ->
foldMapOf programTypeSigs thisTs p
`u` foldMapOf programScDefs thatSc p
where u = H.unionWith unionThese
thisTs = ifoldMap @b @(HashMap b)
(\n t -> H.singleton n (This (n,t)))
thatSc = foldMap $ \sc ->
H.singleton (sc ^. _lhs . _1) (That sc)
prettyGroup :: These (b, Type) (ScDef b) -> Doc
prettyGroup = bifoldr vcatWithSemi vcatWithSemi mempty
. bimap prettyTySig pretty
vcatWithSemi a b = (a <+> ";") $$ b
prettyTySig (n,t) = hsep [ttext n, "::", pretty t]
unionThese (This a) (That b) = These a b
unionThese (That b) (This a) = These a b
unionThese (These a b) _ = These a b
cataDataTag n (t,a) acc = prettyDataTag n t a $+$ acc
prettyDataTag n t a =
hsep ["{-#", "PackData", ttext n, ttext t, ttext a, "#-}"]
instance Pretty Type where
prettyPrec _ (TyVar n) = ttext n
prettyPrec _ TyFun = "(->)"
prettyPrec _ (TyCon n) = ttext n
prettyPrec p (a :-> b) = maybeParens (p>0) $
hsep [prettyPrec 1 a, "->", prettyPrec 0 b]
prettyPrec p (TyApp f x) = maybeParens (p>1) $
prettyPrec 1 f <+> prettyPrec 2 x
instance (Pretty b) => Pretty (ScDef b) where
pretty sc = hsep [name, as, "=", hang empty 1 e]
where
name = ttext $ sc ^. _lhs . _1
as = sc & hsepOf (_lhs . _2 . each . to ttext)
e = pretty $ sc ^. _rhs
instance (Pretty b) => Pretty (Expr b) where
prettyPrec _ (Var n) = ttext n
prettyPrec _ (Con t a) = "Pack{" <> (ttext t <+> ttext a) <> "}"
prettyPrec _ (Lam bs e) = hsep ["λ", hsep (prettyPrec 1 <$> bs), "->", pretty e]
prettyPrec _ (Let r bs e) = hsep [word, explicitLayout bs]
$+$ hsep ["in", pretty e]
where word = if r == Rec then "letrec" else "let"
prettyPrec p (App f x) = maybeParens (p>0) $
prettyPrec 0 f <+> prettyPrec 1 x
prettyPrec _ (Lit l) = pretty l
prettyPrec p (Case e as) = maybeParens (p>0) $
"case" <+> pretty e <+> "of"
$+$ nest 2 (explicitLayout as)
instance (Pretty b) => Pretty (Alter b) where
pretty (Alter c as e) =
hsep [pretty c, hsep (pretty <$> as), "->", pretty e]
instance Pretty AltCon where
pretty (AltData n) = ttext n
pretty (AltLit l) = pretty l
pretty (AltTag t) = ttext t
pretty AltDefault = "_"
instance Pretty Lit where
pretty (IntL n) = ttext n
instance (Pretty b) => Pretty (Binding b) where
pretty (k := v) = hsep [pretty k, "=", pretty v]
explicitLayout :: (Pretty a) => [a] -> Doc
explicitLayout as = vcat inner <+> "}" where
inner = zipWith (<+>) delims (pretty <$> as)
delims = "{" : repeat ";"
instance Pretty TyCon
instance Pretty Var
--------------------------------------------------------------------------------
deriveShow1 ''ExprF
instance Lift b => Lift1 (ExprF b) where
lift1 (VarF k) = liftCon 'VarF (lift k)
lift1 (AppF f x) = liftCon2 'AppF (lift f) (lift x)
lift1 (LamF b e) = liftCon2 'LamF (lift b) (lift e)
lift1 (LetF r bs e) = liftCon3 'LetF (lift r) (lift bs) (lift e)
lift1 (CaseF e as) = liftCon2 'CaseF (lift e) (lift as)
lift1 (TypeF t) = liftCon 'TypeF (lift t)
lift1 (LitF l) = liftCon 'LitF (lift l)
deriving instance (Show b, Show a) => Show (ExprF b a)
deriving instance Show b => Show (Binding b)
deriving instance Show b => Show (Alter b)
deriving instance Show b => Show (ScDef b)
deriving instance Show b => Show (Program b)
deriving instance Lift b => Lift (Binding b)
deriving instance Lift b => Lift (Alter b)
deriveEq1 ''ExprF
deriving instance Eq b => Eq (Alter b)
deriving instance Eq b => Eq (Binding b)
deriving instance (Eq a, Eq b) => Eq (ExprF b a)