2 Commits
sysf ... ugh

Author SHA1 Message Date
crumbtoo
8283826846 love when writing d instead of d-1 causes hours of stress 2024-02-13 09:28:36 -07:00
crumbtoo
514abe802b ugh 2024-02-12 15:49:02 -07:00
50 changed files with 89219 additions and 1799 deletions

View File

@@ -1,11 +1,10 @@
GHC_VERSION = $(shell ghc --numeric-version)
HAPPY = happy
HAPPY_OPTS = -a -g -c -i/tmp/t.info
ALEX = alex
ALEX_OPTS = -g
SRC = src
CABAL_BUILD = $(shell ./find-build.cl)
CABAL_BUILD = dist-newstyle/build/x86_64-osx/ghc-9.6.2/rlp-0.1.0.0/build
all: parsers lexers

View File

@@ -26,14 +26,12 @@ $ cabal test --test-show-details=direct
#### TLDR
```sh
# Compile and evaluate examples/rlp/QuickSort.rl
$ rlpc examples/QuickSort.rl
# Compile and evaluate examples/factorial.cr, with evaluation info dumped to stderr
$ rlpc -ddump-eval examples/factorial.cr
# Compile and evaluate t.cr, with evaluation info dumped to t.log
$ rlpc -ddump-eval -l t.log t.cr
# Compile and evaluate t.rl, dumping the desugared Core
$ rlpc -ddump-desugared t.rl
# Compile and evaluate t.rl with all compiler messages enabled
$ rlpc -dALL t.rl
```
#### Options
@@ -128,7 +126,7 @@ parsing remains.
- [x] Garbage Collection
- [ ] Stable documentation for the evaluation model
### ~~February Release Plan~~
### February Release Plan
- [x] Beta rl' to Core
- [x] UX improvements
- [x] Actual compiler errors -- no more unexceptional `error` calls
@@ -136,14 +134,12 @@ parsing remains.
- [x] Annotate the AST with token positions for errors (NOTE: As of Feb. 1,
this has been done, but the locational info is not yet used in error messages)
- [x] Compiler architecture diagram
- [x] More examples
- [ ] More examples
### March Release Plan
- [ ] Tests
- [ ] rl' parser
- [ ] rl' lexer
- [ ] Ditch TTG in favour of a simpler AST focusing on extendability via Fix, Free,
Cofree, etc. rather than boilerplate-heavy type families
### Indefinite Release Plan
@@ -154,6 +150,8 @@ than the other release plans.
- [ ] Complete all TODOs
- [ ] Replace mtl with effectful
- [ ] rl' type-checker
- [ ] Ditch TTG in favour of a simpler AST focusing on extendability via Fix, Free,
Cofree, etc. rather than boilerplate-heavy type families
- [ ] Stable rl' to Core
- [ ] Core polish
- [ ] Better, stable parser
@@ -162,4 +160,3 @@ than the other release plans.
- [ ] Less hacky pragmas
- [ ] Choose a target. LLVM, JS, C, and WASM are currently top contenders
- [ ] https://proglangdesign.net/wiki/challenges

View File

@@ -6,7 +6,7 @@ module CoreDriver
import Compiler.RLPC
import Control.Monad
import Data.Text qualified as T
import Control.Lens.Combinators
import Lens.Micro.Platform
import Core.Lex
import Core.Parse

View File

@@ -19,7 +19,7 @@ import System.Exit (exitSuccess)
import Core
import TI
import GM
import Control.Lens.Combinators hiding (argument)
import Lens.Micro.Platform
import CoreDriver qualified
import RlpDriver qualified

8
cabal.project.local Normal file
View File

@@ -0,0 +1,8 @@
profiling: True
ignore-project: False
library-profiling: True
executable-profiling: True
profiling-detail: all-functions
tests: True
benchmarks: True

5
cabal.project.local~ Normal file
View File

@@ -0,0 +1,5 @@
ignore-project: False
library-profiling: True
executable-profiling: True
tests: True
benchmarks: True

View File

@@ -63,13 +63,52 @@ an assembly target. The goal of our new G-Machine is to compile a *linear
sequence of instructions* which, **when executed**, build up a graph
representing the code.
*************
The G-Machine
*************
**************************
Trees and Vines, in Theory
**************************
Rather than instantiating an expression at runtime -- traversing the AST and
building a graph -- we want to compile all expressions at compile-time,
generating a linear sequence of instructions which may be executed to build the
graph.
**************************
Evaluation: Slurping Vines
**************************
WIP.
Laziness
--------
WIP.
* Instead of :code:`Slide (n+1); Unwind`, do :code:`Update n; Pop n; Unwind`
****************************
Compilation: Squashing Trees
****************************
WIP.
Notice that we do not keep a (local) environment at run-time. The environment
only exists at compile-time to map local names to stack indices. When compiling
a supercombinator, the arguments are enumerated from zero (the top of the
stack), and passed to :code:`compileR` as an environment.
.. literalinclude:: /../../src/GM.hs
:dedent:
:start-after: -- >> [ref/Instr]
:end-before: -- << [ref/Instr]
:start-after: -- >> [ref/compileSc]
:end-before: -- << [ref/compileSc]
:caption: src/GM.hs
Of course, variables being indexed relative to the top of the stack means that
they will become inaccurate the moment we push or pop the stack a single time.
The way around this is quite simple: simply offset the stack when w
.. literalinclude:: /../../src/GM.hs
:dedent:
:start-after: -- >> [ref/compileC]
:end-before: -- << [ref/compileC]
:caption: src/GM.hs

View File

@@ -62,6 +62,159 @@ braces and semicolons. In developing our *layout* rules, we will follow in the
pattern of translating the whitespace-sensitive source language to an explicitly
sectioned language.
But What About Haskell?
***********************
Parsing Haskell -- and thus rl' -- is only slightly more complex than Python,
but the design is certainly more sensitive.
.. code-block:: haskell
-- line folds
something = this is a
single expression
-- an extremely common style found in haskell
data Some = Data
{ is :: Presented
, in :: This
, silly :: Style
}
-- another style oddity
-- note that this is not a single
-- continued line! `look at`,
-- `this odd`, and `alignment` are all
-- discrete items!
anotherThing = do look at
this odd
alignment
But enough fear, lets actually think about implementation. Firstly, some
formality: what do we mean when we say layout? We will define layout as the
rules we apply to an implicitly-sectioned language in order to yield one that is
explicitly-sectioned. We will also define indentation of a lexeme as the column
number of its first character.
Thankfully for us, our entry point is quite clear; layouts only appear after a
select few keywords, (with a minor exception; TODO: elaborate) being :code:`let`
(followed by supercombinators), :code:`where` (followed by supercombinators),
:code:`do` (followed by expressions), and :code:`of` (followed by alternatives)
(TODO: all of these terms need linked glossary entries). In order to manage the
cascade of layout contexts, our lexer will record a stack for which each element
is either :math:`\varnothing`, denoting an explicit layout written with braces
and semicolons, or a :math:`\langle n \rangle`, denoting an implicitly laid-out
layout where the start of each item belonging to the layout is indented
:math:`n` columns.
.. code-block:: haskell
-- layout stack: []
module M where -- layout stack: [∅]
f x = let -- layout keyword; remember indentation of next token
y = w * w -- layout stack: [∅, <10>]
w = x + x
-- layout ends here
in do -- layout keyword; next token is a brace!
{ -- layout stack: [∅]
print y;
print x;
}
Finally, we also need the concept of "virtual" brace tokens, which as far as
we're concerned at this moment are exactly like normal brace tokens, except
implicitly inserted by the compiler. With the presented ideas in mind, we may
begin to introduce a small set of informal rules describing the lexer's handling
of layouts, the first being:
1. If a layout keyword is followed by the token '{', push :math:`\varnothing`
onto the layout context stack. Otherwise, push :math:`\langle n \rangle` onto
the layout context stack where :math:`n` is the indentation of the token
following the layout keyword. Additionally, the lexer is to insert a virtual
opening brace after the token representing the layout keyword.
Consider the following observations from that previous code sample:
* Function definitions should belong to a layout, each of which may start at
column 1.
* A layout can enclose multiple bodies, as seen in the :code:`let`-bindings and
the :code:`do`-expression.
* Semicolons should *terminate* items, rather than *separate* them.
Our current focus is the semicolons. In an implicit layout, items are on
separate lines each aligned with the previous. A naïve implementation would be
to insert the semicolon token when the EOL is reached, but this proves unideal
when you consider the alignment requirement. In our implementation, our lexer
will wait until the first token on a new line is reached, then compare
indentation and insert a semicolon if appropriate. This comparison -- the
nondescript measurement of "more, less, or equal indentation" rather than a
numeric value -- is referred to as *offside* by myself internally and the
Haskell report describing layouts. We informally formalise this rule as follows:
2. When the first token on a line is preceeded only by whitespace, if the
token's first grapheme resides on a column number :math:`m` equal to the
indentation level of the enclosing context -- i.e. the :math:`\langle n
\rangle` on top of the layout stack. Should no such context exist on the
stack, assume :math:`m > n`.
We have an idea of how to begin layouts, delimit the enclosed items, and last
we'll need to end layouts. This is where the distinction between virtual and
non-virtual brace tokens comes into play. The lexer needs only partial concern
towards closing layouts; the complete responsibility is shared with the parser.
This will be elaborated on in the next section. For now, we will be content with
naïvely inserting a virtual closing brace when a token is indented right of the
layout.
3. Under the same conditions as rule 2., when :math:`m < n` the lexer shall
insert a virtual closing brace and pop the layout stack.
This rule covers some cases including the top-level, however, consider
tokenising the :code:`in` in a :code:`let`-expression. If our lexical analysis
framework only allows for lexing a single token at a time, we cannot return both
a virtual right-brace and a :code:`in`. Under this model, the lexer may simply
pop the layout stack and return the :code:`in` token. As we'll see in the next
section, as long as the lexer keeps track of its own context (i.e. the stack),
the parser will cope just fine without the virtual end-brace.
Parsing Lonely Braces
*********************
When viewed in the abstract, parsing and tokenising are near-identical tasks yet
the two are very often decomposed into discrete systems with very different
implementations. Lexers operate on streams of text and tokens, while parsers
are typically far less linear, using a parse stack or recursing top-down. A
big reason for this separation is state management: the parser aims to be as
context-free as possible, while the lexer tends to burden the necessary
statefulness. Still, the nature of a stream-oriented lexer makes backtracking
difficult and quite inelegant.
However, simply declaring a parse error to be not an error at all
counterintuitively proves to be an elegant solution our layout problem which
minimises backtracking and state in both the lexer and the parser. Consider the
following definitions found in rlp's BNF:
.. productionlist:: rlp
VOpen : `vopen`
VClose : `vclose` | `error`
A parse error is recovered and treated as a closing brace. Another point of note
in the BNF is the difference between virtual and non-virtual braces (TODO: i
don't like that the BNF is formatted without newlines :/):
.. productionlist:: rlp
LetExpr : `let` VOpen Bindings VClose `in` Expr | `let` `{` Bindings `}` `in` Expr
This ensures that non-virtual braces are closed explicitly.
This set of rules is adequete enough to satisfy our basic concerns about line
continations and layout lists. For a more pedantic description of the layout
system, see `chapter 10
<https://www.haskell.org/onlinereport/haskell2010/haskellch10.html>`_ of the
2010 Haskell Report, which I heavily referenced here.
References
----------

View File

@@ -1,9 +1,7 @@
fac : Int# -> Int#
fac n = case (==#) n 0 of
{ <1> -> 1
; <0> -> *# n (fac (-# n 1))
};
main : IO ()
main = fac 3;

10
examples/rlp/Help.rl Normal file
View File

@@ -0,0 +1,10 @@
id x = x
thing = Identity 3
data Identity a = Identity a
main = case thing of
Identity x -> let y = x
in y

13
examples/rlp/MapList.rl Normal file
View File

@@ -0,0 +1,13 @@
data List a = Nil | Cons a (List a)
map :: (a -> b) -> List a -> List b
map f l = case l of
Nil -> Nil
Cons a as -> Cons (f a) (map f as)
list = Cons 1 (Cons 2 (Cons 3 Nil))
lam x = *# x x
main = print# (map lam list)

View File

@@ -23,9 +23,18 @@ qsort l = case l of
greater = filter (<# a) as
in append (append (qsort lesser) (Cons a Nil)) (qsort greater)
list :: List Int#
list = Cons 9 (Cons 2 (Cons 3 (Cons 2
(Cons 5 (Cons 2 (Cons 12 (Cons 89 Nil)))))))
main = print# (qsort list)
list2 = Cons 2 (Cons 3 Nil)
lt :: Int# -> Int# -> Bool
lt a = (>=# a)
id x = x
main = case list of
Nil -> Nil
Cons a as -> let lesser = filter (lt a) as
in lesser

View File

@@ -1,8 +0,0 @@
#!/usr/bin/env sbcl --script
(let* ((paths (directory "dist-newstyle/build/*/*/rlp-*/build/"))
(n (length paths)))
(cond ((< 1 n) (error ">1 build directories found. run `cabal clean`."))
((< n 1) (error "no build directories found. this shouldn't happen lol"))
(t (format t "~A" (car paths)))))

85264
instrs Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -32,8 +32,6 @@ library
, Core.HindleyMilner
, Control.Monad.Errorful
, Rlp.Syntax
, Rlp.Syntax.Backstage
, Rlp.Syntax.Types
-- , Rlp.Parse.Decls
, Rlp.Parse
, Rlp.Parse.Associate
@@ -44,14 +42,10 @@ library
, Data.Heap
, Data.Pretty
, Core.Parse
, Core.Parse.Types
, Core.Lex
, Core2Core
, Rlp2Core
, Control.Monad.Utils
, Misc
, Misc.Lift1
, Core.SystemF
build-tool-depends: happy:happy, alex:alex
@@ -66,21 +60,28 @@ library
, data-default-class >= 0.1.2 && < 0.2
, hashable >= 1.4.3 && < 1.5
, mtl >= 2.3.1 && < 2.4
, text >= 2.0.2 && < 2.2
, text >= 2.0.2 && < 2.1
, megaparsec >= 9.6.1 && < 9.7
, microlens >= 0.4.13 && < 0.5
, microlens-mtl >= 0.2.0 && < 0.3
, microlens-platform >= 0.4.3 && < 0.5
, microlens-th >= 0.4.3 && < 0.5
, unordered-containers >= 0.2.20 && < 0.3
, recursion-schemes >= 5.2.2 && < 5.3
, data-fix >= 0.3.2 && < 0.4
, utf8-string >= 1.0.2 && < 1.1
, extra >= 1.7.0 && <2
, semigroupoids >=6.0 && <6.1
, comonad >=5.0.0 && <6
, lens >=5.2.3 && <6.0
, text-ansi >=0.2.0 && <0.4
, extra >= 1.7.0 && < 2
, semigroupoids
, comonad
, lens
, text-ansi
, microlens-pro ^>=0.2.0
, effectful-core ^>=2.3.0.0
, deriving-compat ^>=0.6.0
, these >=0.2 && <2.0
, free >=5.2
, bifunctors >=5.2
ghc-options:
-fprof-auto
hs-source-dirs: src
default-language: GHC2021
@@ -94,7 +95,6 @@ library
DerivingVia
StandaloneDeriving
DerivingStrategies
BlockArguments
executable rlpc
import: warnings
@@ -105,10 +105,10 @@ executable rlpc
build-depends: base >=4.17.0.0 && <4.20.0.0
, rlp
, optparse-applicative >= 0.18.1 && < 0.19
, microlens-platform
, mtl >= 2.3.1 && < 2.4
, unordered-containers >= 0.2.20 && < 0.3
, lens >=5.2.3 && <6.0
, text >= 2.0.2 && < 2.2
, text >= 2.0.2 && < 2.1
hs-source-dirs: app
default-language: GHC2021
@@ -125,10 +125,8 @@ test-suite rlp-test
, QuickCheck
, hspec ==2.*
, microlens
, lens >=5.2.3 && <6.0
other-modules: Arith
, GMSpec
, Core.HindleyMilnerSpec
, Compiler.TypesSpec
build-tool-depends: hspec-discover:hspec-discover

2764
rlpc.prof Normal file

File diff suppressed because it is too large Load Diff

1
rlpc.tix Normal file

File diff suppressed because one or more lines are too long

View File

@@ -11,55 +11,38 @@ module Compiler.JustRun
( justLexCore
, justParseCore
, justTypeCheckCore
, justHdbg
, makeItPretty, makeItPretty'
)
where
----------------------------------------------------------------------------------
import Core.Lex
import Core.Parse
import Core.HindleyMilner
import Core.Syntax
import Core.Syntax (Program')
import Compiler.RLPC
import Control.Arrow ((>>>))
import Control.Monad ((>=>), void)
import Control.Monad ((>=>))
import Control.Comonad
import Control.Lens
import Data.Text qualified as T
import Data.Function ((&))
import System.IO
import GM
import Rlp.Parse
import Rlp2Core
import Data.Pretty
----------------------------------------------------------------------------------
justHdbg :: String -> IO GmState
justHdbg s = do
p <- evalRLPCIO def (parseRlpProgR >=> desugarRlpProgR $ T.pack s)
withFile "/tmp/t.log" WriteMode $ hdbgProg p
justLexCore :: String -> Either [MsgEnvelope RlpcError] [CoreToken]
justLexCore s = lexCoreR (T.pack s)
& mapped . each %~ extract
& rlpcToEither
justParseCore :: String -> Either [MsgEnvelope RlpcError] (Program Var)
justParseCore :: String -> Either [MsgEnvelope RlpcError] Program'
justParseCore s = parse (T.pack s)
& rlpcToEither
where parse = lexCoreR @Identity >=> parseCoreProgR
where parse = lexCoreR >=> parseCoreProgR
justTypeCheckCore :: String -> Either [MsgEnvelope RlpcError] Program'
justTypeCheckCore s = typechk (T.pack s)
& rlpcToEither
where typechk = lexCoreR >=> parseCoreProgR >=> checkCoreProgR
makeItPretty :: (Pretty a) => Either e a -> Either e Doc
makeItPretty = fmap pretty
makeItPretty' :: (Pretty (WithTerseBinds a)) => Either e a -> Either e Doc
makeItPretty' = fmap (pretty . WithTerseBinds)
rlpcToEither :: RLPC a -> Either [MsgEnvelope RlpcError] a
rlpcToEither r = case evalRLPC def r of
(Just a, _) -> Right a

View File

@@ -27,7 +27,7 @@ module Compiler.RLPC
-- ** Lenses
, rlpcLogFile, rlpcDFlags, rlpcEvaluator, rlpcInputFiles, rlpcLanguage
-- * Misc. MTL-style functions
, liftErrorful, liftMaybe, hoistRlpcT
, liftErrorful, hoistRlpcT
-- * Misc. Rlpc Monad -related types
, RLPCOptions(RLPCOptions), IsRlpcError(..), RlpcError(..)
, MsgEnvelope(..), Severity(..)
@@ -64,8 +64,8 @@ import Data.Text.IO qualified as T
import System.IO
import Text.ANSI qualified as Ansi
import Text.PrettyPrint hiding ((<>))
import Control.Lens
import Data.Text.Lens (packed, unpacked, IsText)
import Lens.Micro.Platform
import Lens.Micro.Platform.Internal
import System.Exit
----------------------------------------------------------------------------------
@@ -108,9 +108,6 @@ evalRLPCT opt r = runRLPCT r
liftErrorful :: (Monad m, IsRlpcError e) => ErrorfulT (MsgEnvelope e) m a -> RLPCT m a
liftErrorful e = RLPCT $ lift (fmap liftRlpcError `mapErrorful` e)
liftMaybe :: (Monad m) => Maybe a -> RLPCT m a
liftMaybe m = RLPCT . lift . ErrorfulT . pure $ (m, [])
hoistRlpcT :: (forall a. m a -> n a)
-> RLPCT m a -> RLPCT n a
hoistRlpcT f rma = RLPCT $ ReaderT $ \opt ->
@@ -223,9 +220,9 @@ docRlpcErr msg = header
rule = repeat (ttext . Ansi.blue . Ansi.bold $ "|")
srclines = ["", "<problematic source code>", ""]
filename = msgColour "<input>"
pos = msgColour $ tshow (msg ^. msgSpan . srcSpanLine)
pos = msgColour $ tshow (msg ^. msgSpan . srcspanLine)
<> ":"
<> tshow (msg ^. msgSpan . srcSpanColumn)
<> tshow (msg ^. msgSpan . srcspanColumn)
header = ttext $ filename <> msgColour ":" <> pos <> msgColour ": "
<> errorColour "error" <> msgColour ":"

View File

@@ -14,9 +14,6 @@ module Compiler.RlpcError
-- * Located Comonad
, Located(..)
, SrcSpan(..)
-- * Common error messages
, undefinedVariableErr
)
where
----------------------------------------------------------------------------------
@@ -24,7 +21,8 @@ import Control.Monad.Errorful
import Data.Text (Text)
import Data.Text qualified as T
import GHC.Exts (IsString(..))
import Control.Lens
import Lens.Micro.Platform
import Lens.Micro.Platform.Internal
import Compiler.Types
----------------------------------------------------------------------------------
@@ -77,8 +75,3 @@ debugMsg tag e = MsgEnvelope
, _msgSeverity = SevDebug tag
}
undefinedVariableErr :: Text -> RlpcError
undefinedVariableErr n = Text
[ "Variable not in scope: `" <> n <> "'."
]

View File

@@ -1,81 +1,33 @@
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE UndecidableInstances, QuantifiedConstraints #-}
{-# LANGUAGE PatternSynonyms #-}
module Compiler.Types
( SrcSpan(..)
, srcSpanLine, srcSpanColumn, srcSpanAbs, srcSpanLen
, pattern (:<$)
, srcspanLine, srcspanColumn, srcspanAbs, srcspanLen
, Located(..)
, HasLocation(..)
, _Located
, nolo, nolo'
, (<~>), (~>), (~~>), (<~~)
, comb2, comb3, comb4
, lochead
, located
, nolo
, (<<~), (<~>), (<#>)
-- * Re-exports
, Comonad(extract)
, Comonad
, Apply
, Bind
)
where
--------------------------------------------------------------------------------
import Language.Haskell.TH.Syntax (Lift)
import Control.Comonad
import Control.Comonad.Cofree
import Control.Comonad.Trans.Cofree qualified as Trans.Cofree
import Control.Comonad.Trans.Cofree (CofreeF)
import Data.Functor.Apply
import Data.Functor.Bind
import Data.Functor.Compose
import Data.Functor.Foldable
import Data.Semigroup.Foldable
import Data.Fix hiding (cata, ana)
import Data.Kind
import Control.Lens hiding ((<<~), (:<))
import Data.List.NonEmpty (NonEmpty)
import Data.Function (on)
import Control.Lens hiding ((<<~))
import Language.Haskell.TH.Syntax (Lift)
--------------------------------------------------------------------------------
-- | Token wrapped with a span (line, column, absolute, length)
data Located a = Located SrcSpan a
deriving (Show, Lift, Functor)
data Floc f = Floc SrcSpan (f (Floc f))
pattern (:<$) :: a -> f b -> Trans.Cofree.CofreeF f a b
pattern a :<$ b = a Trans.Cofree.:< b
(<~>) :: a -> b -> SrcSpan
(<~>) = undefined
infixl 5 <~>
-- (~>) :: (CanGet k, CanSet k', HasLocation k a, HasLocation k' b)
-- => a -> b -> b
-- a ~> b =
(~>) = undefined
infixl 4 ~>
-- (~~>) :: (CanGet k, HasLocation k a, CanSet k', HasLocation k' b)
-- => (a -> b) -> a -> b
-- (~~>) :: (f SrcSpan -> b) -> Cofree f SrcSpan -> Cofree f SrcSpan
-- f ~~> (ss :< as) = ss :< f as
(~~>) = undefined
infixl 3 ~~>
-- (<~~) :: (GetLocation a, HasLocation b) => (a -> b) -> a -> b
-- a <~~ b = a b & location <>~ srcspan b
(<~~) = undefined
infixr 2 <~~
located :: Lens (Located a) (Located b) a b
located = lens extract ($>)
instance Apply Located where
liftF2 f (Located sa p) (Located sb q)
@@ -95,136 +47,53 @@ data SrcSpan = SrcSpan
!Int -- ^ Column
!Int -- ^ Absolute
!Int -- ^ Length
deriving (Show, Eq, Lift)
deriving (Show, Lift)
tupling :: Iso' SrcSpan (Int, Int, Int, Int)
tupling = iso (\ (SrcSpan a b c d) -> (a,b,c,d))
(\ (a,b,c,d) -> SrcSpan a b c d)
srcSpanLine, srcSpanColumn, srcSpanAbs, srcSpanLen :: Lens' SrcSpan Int
srcSpanLine = tupling . _1
srcSpanColumn = tupling . _2
srcSpanAbs = tupling . _3
srcSpanLen = tupling . _4
srcspanLine, srcspanColumn, srcspanAbs, srcspanLen :: Lens' SrcSpan Int
srcspanLine = tupling . _1
srcspanColumn = tupling . _2
srcspanAbs = tupling . _3
srcspanLen = tupling . _4
-- | debug tool
nolo :: a -> Located a
nolo = Located (SrcSpan 0 0 0 0)
nolo' :: f (Cofree f SrcSpan) -> Cofree f SrcSpan
nolo' as = SrcSpan 0 0 0 0 :< as
instance Semigroup SrcSpan where
-- multiple identities? what are the consequences of this...?
SrcSpan _ _ _ 0 <> SrcSpan l c a s = SrcSpan l c a s
SrcSpan l c a s <> SrcSpan _ _ _ 0 = SrcSpan l c a s
SrcSpan la ca aa sa <> SrcSpan lb cb ab sb = SrcSpan l c a s where
l = min la lb
c = min ca cb
a = min aa ab
s = case aa `compare` ab of
EQ -> max sa sb
LT -> max sa (ab + sb - aa)
GT -> max sb (aa + sa - ab)
LT -> max sa (ab + lb - aa)
GT -> max sb (aa + la - ab)
--------------------------------------------------------------------------------
-- | A synonym for '(<<=)' with a tighter precedence and left-associativity for
-- use with '(<~>)' in a sort of, comonadic pseudo-applicative style.
data GetOrSet = Get | Set | GetSet
(<<~) :: (Comonad w) => (w a -> b) -> w a -> w b
(<<~) = (<<=)
class CanGet (k :: GetOrSet)
class CanSet (k :: GetOrSet) where
infixl 4 <<~
instance CanGet Get
instance CanGet GetSet
instance CanSet Set
instance CanSet GetSet
-- | Similar to '(<*>)', but with a cokleisli arrow.
data GetSetLens (k :: GetOrSet) s t a b :: Type where
Getter_ :: (s -> a) -> GetSetLens Get s t a b
Setter_ :: ((a -> b) -> s -> t) -> GetSetLens Set s t a b
GetterSetter :: (CanGet k', CanSet k')
=> (s -> a) -> (s -> b -> t) -> GetSetLens k' s t a b
(<~>) :: (Comonad w, Bind w) => w (w a -> b) -> w a -> w b
mc <~> ma = mc >>- \f -> ma =>> f
type GetSetLens' k s a = GetSetLens k s s a a
infixl 4 <~>
class HasLocation k s | s -> k where
-- location :: (Access k f, Functor f) => LensLike' f s SrcSpan
getSetLocation :: GetSetLens' k s SrcSpan
-- this is getting silly
type family Access (k :: GetOrSet) f where
Access GetSet f = Functor f
Access Set f = Settable f
Access Get f = (Functor f, Contravariant f)
(<#>) :: (Functor f) => f (a -> b) -> a -> f b
fab <#> a = fmap ($ a) fab
instance HasLocation GetSet SrcSpan where
getSetLocation = GetterSetter id (flip const)
-- location = fromGetSetLens getSetLocation
instance (CanSet k, HasLocation k a) => HasLocation Set (r -> a) where
getSetLocation = Setter_ $ \ss ra r -> ra r & fromSet getSetLocation %~ ss
-- location = fromSet getSetLocation
instance (HasLocation k a) => HasLocation k (Cofree f a) where
getSetLocation = case getSetLocation @_ @a of
Getter_ sa -> Getter_ $ \ (s :< _) -> sa s
Setter_ abst -> Setter_ $ \ss (s :< as) -> abst ss s :< as
GetterSetter sa sbt -> GetterSetter sa' sbt' where
sa' (s :< _) = sa s
sbt' (s :< as) b = sbt s b :< as
location :: (Access k f, Functor f, HasLocation k s)
=> LensLike' f s SrcSpan
location = fromGetSetLens getSetLocation
fromGetSetLens :: (Access k f, Functor f) => GetSetLens' k s a -> LensLike' f s a
fromGetSetLens gsl = case gsl of
Getter_ sa -> to sa
Setter_ abst -> setting abst
GetterSetter sa sbt -> lens sa sbt
fromGet :: (CanGet k) => GetSetLens k s t a b -> Getter s a
fromGet (Getter_ sa) = to sa
fromGet (GetterSetter sa _) = to sa
fromSet :: (CanSet k) => GetSetLens k s t a b -> Setter s t a b
fromSet (Setter_ abst) = setting abst
fromSet (GetterSetter sa sbt) = lens sa sbt
fromGetSet :: (CanGet k, CanSet k) => GetSetLens k s t a b -> Lens s t a b
fromGetSet (GetterSetter sa sbt) = lens sa sbt
--------------------------------------------------------------------------------
comb2 :: (Functor f, Semigroup m)
=> (Cofree f m -> Cofree f m -> f (Cofree f m))
-> Cofree f m -> Cofree f m -> Cofree f m
comb2 f a b = ss :< f a b
where ss = a `mextract` b
comb3 :: (Functor f, Semigroup m)
=> (Cofree f m -> Cofree f m -> Cofree f m -> f (Cofree f m))
-> Cofree f m -> Cofree f m -> Cofree f m -> Cofree f m
comb3 f a b c = ss :< f a b c
where ss = a `mapply` b `mextract` c
comb4 :: (Functor f, Semigroup m)
=> (Cofree f m -> Cofree f m -> Cofree f m -> Cofree f m
-> f (Cofree f m))
-> Cofree f m -> Cofree f m -> Cofree f m -> Cofree f m -> Cofree f m
comb4 f a b c d = ss :< f a b c d
where ss = a `mapply` b `mapply` c `mextract` d
mextract :: (Comonad w, Semigroup m) => w m -> w m -> m
mextract = (<>) `on` extract
mapply :: (Comonad w, Semigroup m) => w m -> w m -> w m
mapply a b = b <&> (<> extract a)
lochead :: Functor f
=> (f SrcSpan -> f SrcSpan) -> Located (f SrcSpan) -> Cofree f SrcSpan
lochead afs (Located ss fss) = ss :< unwrap (lochead afs $ Located ss fss)
--------------------------------------------------------------------------------
infixl 4 <#>
makePrisms ''Located

View File

@@ -20,7 +20,7 @@ import Data.Functor.Identity
import Data.Coerce
import Data.HashSet (HashSet)
import Data.HashSet qualified as H
import Control.Lens
import Lens.Micro
----------------------------------------------------------------------------------
newtype ErrorfulT e m a = ErrorfulT { runErrorfulT :: m (Maybe a, [e]) }

View File

@@ -1,5 +1,6 @@
module Core
( module Core.Syntax
, parseCore
, parseCoreProg
, parseCoreExpr
, lexCore

View File

@@ -8,11 +8,15 @@ module Core.Examples where
----------------------------------------------------------------------------------
import Core.Syntax
import Core.TH
import Rlp.TH
----------------------------------------------------------------------------------
letRecExample = undefined
-- fac3 = undefined
-- sumList = undefined
-- constDivZero = undefined
-- idCase = undefined
{--
---
letrecExample :: Program'
letrecExample = [coreProg|
@@ -241,3 +245,17 @@ namedConsCase = [coreProg|
--}
qsort = [rlpProg|
data List a = Nil | Cons a (List a)
list = Cons 9 (Cons 2 (Cons 3 (Cons 2
(Cons 5 (Cons 2 (Cons 12 (Cons 89 Nil)))))))
id x = x
main = case list of
Nil -> Nil
Cons a as -> let lesser = as
in print# lesser
|]

View File

@@ -16,7 +16,9 @@ module Core.HindleyMilner
)
where
----------------------------------------------------------------------------------
import Control.Lens hiding (Context', Context)
import Lens.Micro
import Lens.Micro.Mtl
import Lens.Micro.Platform
import Data.Maybe (fromMaybe)
import Data.Text qualified as T
import Data.Pretty (rpretty)
@@ -35,12 +37,6 @@ import Text.Printf
import Core.Syntax
----------------------------------------------------------------------------------
infer = undefined
check = undefined
checkCoreProg = undefined
checkCoreProgR = undefined
checkCoreExprR = undefined
-- | Annotated typing context -- I have a feeling we're going to want this in the
-- future.
type Context b = [(b, Type)]
@@ -80,8 +76,6 @@ instance IsRlpcError TypeError where
-- throw any number of fatal or nonfatal errors. Run with @runErrorful@.
type HMError = Errorful TypeError
{--
-- | Assert that an expression unifies with a given type
--
-- >>> let e = [coreProg|3|]
@@ -284,4 +278,3 @@ demoContext =
, ("False", TyCon "Bool")
]
--}

View File

@@ -26,7 +26,8 @@ import Compiler.RLPC
import Compiler.Types
-- TODO: unify Located definitions
import Compiler.RlpcError
import Control.Lens
import Lens.Micro
import Lens.Micro.TH
}
%wrapper "monad-strict-text"
@@ -78,7 +79,7 @@ rlp :-
"{" { constTok TokenLBrace }
"}" { constTok TokenRBrace }
";" { constTok TokenSemicolon }
":" { constTok TokenHasType }
"::" { constTok TokenHasType }
"@" { constTok TokenTypeApp }
"{-#" { constTok TokenLPragma `andBegin` pragma }

View File

@@ -5,12 +5,14 @@ Description : Parser for the Core language
-}
{-# LANGUAGE OverloadedStrings, ViewPatterns #-}
module Core.Parse
( parseCoreExpr
( parseCore
, parseCoreExpr
, parseCoreExprR
, parseCoreProg
, parseCoreProgR
, module Core.Lex -- temp convenience
, SrcError
, Module
)
where
@@ -22,7 +24,7 @@ import Core.Syntax
import Core.Lex
import Compiler.RLPC
import Control.Monad
import Control.Lens hiding (snoc)
import Lens.Micro
import Data.Default.Class (def)
import Data.Hashable (Hashable)
import Data.List.Extra
@@ -30,19 +32,19 @@ import Data.Text.IO qualified as TIO
import Data.Text (Text)
import Data.Text qualified as T
import Data.HashMap.Strict qualified as H
import Core.Parse.Types
}
%name parseCore Module
%name parseCoreExpr StandaloneExpr
%name parseCoreProg StandaloneProgram
%tokentype { Located CoreToken }
%error { parseError }
%monad { P }
%monad { RLPC } { happyBind } { happyPure }
%token
let { Located _ TokenLet }
letrec { Located _ TokenLetrec }
module { Located _ TokenModule }
where { Located _ TokenWhere }
case { Located _ TokenCase }
of { Located _ TokenOf }
@@ -66,27 +68,29 @@ import Core.Parse.Types
'{-#' { Located _ TokenLPragma }
'#-}' { Located _ TokenRPragma }
';' { Located _ TokenSemicolon }
':' { Located _ TokenHasType }
'::' { Located _ TokenHasType }
eof { Located _ TokenEOF }
%right '->'
%%
Module :: { Module Name }
Module : module conname where Program Eof { Module (Just ($2, [])) $4 }
| Program Eof { Module Nothing $1 }
Eof :: { () }
Eof : eof { () }
| error { () }
StandaloneProgram :: { Program Var }
StandaloneProgram :: { Program Name }
StandaloneProgram : Program eof { $1 }
Program :: { Program Var }
: TypedScDef ';' Program { $3 & insTypeSig (fst $1)
& insScDef (snd $1) }
| TypedScDef OptSemi { mempty & insTypeSig (fst $1)
& insScDef (snd $1) }
| TLPragma Program {% doTLPragma $1 $2 }
| TLPragma {% doTLPragma $1 mempty }
Program :: { Program Name }
Program : ScTypeSig ';' Program { insTypeSig $1 $3 }
| ScTypeSig OptSemi { singletonTypeSig $1 }
| ScDef ';' Program { insScDef $1 $3 }
| ScDef OptSemi { singletonScDef $1 }
| TLPragma Program {% doTLPragma $1 $2 }
| TLPragma {% doTLPragma $1 mempty }
TLPragma :: { Pragma }
: '{-#' Words '#-}' { Pragma $2 }
@@ -100,152 +104,140 @@ OptSemi : ';' { () }
| {- epsilon -} { () }
ScTypeSig :: { (Name, Type) }
ScTypeSig : Id ':' Type { ($1, $3) }
ScTypeSig : Var '::' Type { ($1,$3) }
TypedScDef :: { (Var, ScDef Var) }
: Id ':' Type ';' Id ParList '=' Expr
{ (MkVar $1 $3, mkTypedScDef $1 $3 $5 $6 $8) }
ScDefs :: { [ScDef Name] }
ScDefs : ScDef ';' ScDefs { $1 : $3 }
| ScDef ';' { [$1] }
| ScDef { [$1] }
-- ScDefs :: { [ScDef PsName] }
-- ScDefs : ScDef ';' ScDefs { $1 : $3 }
-- | ScDef ';' { [$1] }
-- | ScDef { [$1] }
--
-- ScDef :: { ScDef PsName }
-- ScDef : Id ParList '=' Expr { ScDef (Left $1) $2
-- ($4 & binders %~ Right) }
ScDef :: { ScDef Name }
ScDef : Var ParList '=' Expr { ScDef $1 $2 $4 }
-- hack to allow constructors to be compiled into scs
| Con ParList '=' Expr { ScDef $1 $2 $4 }
Type :: { Type }
: TypeApp '->' TypeApp { $1 :-> $3 }
| TypeApp { $1 }
TypeApp :: { Type }
: TypeApp Type1 { TyApp $1 $2 }
| Type1 { $1 }
-- do we want to allow symbolic names for tyvars and tycons?
Type : Type1 { $1 }
Type1 :: { Type }
Type1 : '(' Type ')' { $2 }
| Type1 '->' Type { $1 :-> $3 }
-- do we want to allow symbolic names for tyvars and tycons?
| varname { TyVar $1 }
| conname { if $1 == "Type"
then TyKindType else TyCon $1 }
| conname { TyCon $1 }
ParList :: { [Name] }
ParList : varname ParList { $1 : $2 }
| {- epsilon -} { [] }
ParList :: { [Name] }
ParList : Var ParList { $1 : $2 }
| {- epsilon -} { [] }
StandaloneExpr :: { Expr Var }
StandaloneExpr :: { Expr Name }
StandaloneExpr : Expr eof { $1 }
Expr :: { Expr Var }
Expr :: { Expr Name }
Expr : LetExpr { $1 }
| 'λ' Binders '->' Expr { Lam $2 $4 }
| Application { $1 }
| CaseExpr { $1 }
| Expr1 { $1 }
LetExpr :: { Expr Var }
LetExpr :: { Expr Name }
LetExpr : let '{' Bindings '}' in Expr { Let NonRec $3 $6 }
| letrec '{' Bindings '}' in Expr { Let Rec $3 $6 }
Binders :: { [Var] }
Binders :: { [Name] }
Binders : Var Binders { $1 : $2 }
| Var { [$1] }
Application :: { Expr Var }
Application : Application AppArg { App $1 $2 }
| Expr1 AppArg { App $1 $2 }
Application :: { Expr Name }
Application : Expr1 AppArgs { foldl' App $1 $2 }
AppArg :: { Expr Var }
: '@' Type1 { Type $2 }
| Expr1 { $1 }
AppArgs :: { [Expr Name] }
AppArgs : Expr1 AppArgs { $1 : $2 }
| Expr1 { [$1] }
CaseExpr :: { Expr Var }
CaseExpr :: { Expr Name }
CaseExpr : case Expr of '{' Alters '}' { Case $2 $5 }
Alters :: { [Alter Var] }
Alters :: { [Alter Name] }
Alters : Alter ';' Alters { $1 : $3 }
| Alter ';' { [$1] }
| Alter { [$1] }
Alter :: { Alter Var }
Alter : alttag AltParList '->' Expr { Alter (AltTag $1) $2 $4 }
| conname AltParList '->' Expr { Alter (AltData $1) $2 $4 }
Alter :: { Alter Name }
Alter : alttag ParList '->' Expr { Alter (AltTag $1) $2 $4 }
| Con ParList '->' Expr { Alter (AltData $1) $2 $4 }
AltParList :: { [Var] }
: Var AltParList { $1 : $2 }
| {- epsilon -} { [] }
Expr1 :: { Expr Var }
Expr1 :: { Expr Name }
Expr1 : litint { Lit $ IntL $1 }
| Id { Var $1 }
| PackCon { $1 }
| '(' Expr ')' { $2 }
PackCon :: { Expr Var }
PackCon :: { Expr Name }
PackCon : pack '{' litint litint '}' { Con $3 $4 }
Bindings :: { [Binding Var] }
Bindings :: { [Binding Name] }
Bindings : Binding ';' Bindings { $1 : $3 }
| Binding ';' { [$1] }
| Binding { [$1] }
Binding :: { Binding Var }
Binding :: { Binding Name }
Binding : Var '=' Expr { $1 := $3 }
Id :: { Name }
: varname { $1 }
| conname { $1 }
Id : Var { $1 }
| Con { $1 }
Var :: { Var }
Var : '(' varname ':' Type ')' { MkVar $2 $4 }
Var :: { Name }
Var : varname { $1 }
| varsym { $1 }
Con :: { Name }
Con : conname { $1 }
| consym { $1 }
{
parseError :: [Located CoreToken] -> P a
parseError :: [Located CoreToken] -> RLPC a
parseError (Located _ t : _) =
error $ "<line>" <> ":" <> "<col>"
<> ": parse error at token `" <> show t <> "'"
exprPragma :: [String] -> RLPC (Expr Var)
{-# WARNING parseError "unimpl" #-}
exprPragma :: [String] -> RLPC (Expr Name)
exprPragma ("AST" : e) = undefined
exprPragma _ = undefined
astPragma :: [String] -> RLPC (Expr Var)
{-# WARNING exprPragma "unimpl" #-}
astPragma :: [String] -> RLPC (Expr Name)
astPragma _ = undefined
-- insTypeSig :: (Hashable b) => (b, Type) -> Program b -> Program b
-- insTypeSig ts = programTypeSigs %~ uncurry H.insert ts
{-# WARNING astPragma "unimpl" #-}
insTypeSig :: Var -> Program Var -> Program Var
insTypeSig w@(MkVar _ t) = programTypeSigs %~ H.insert w t
insTypeSig :: (Hashable b) => (b, Type) -> Program b -> Program b
insTypeSig ts = programTypeSigs %~ uncurry H.insert ts
-- singletonTypeSig :: (Hashable b) => (b, Type) -> Program b
-- singletonTypeSig ts = insTypeSig ts mempty
singletonTypeSig :: (Hashable b) => (b, Type) -> Program b
singletonTypeSig ts = insTypeSig ts mempty
insScDef :: (Hashable b) => ScDef b -> Program b -> Program b
insScDef sc = programScDefs %~ (sc:)
-- singletonScDef :: (Hashable b) => ScDef b -> Program b
-- singletonScDef sc = insScDef sc mempty
singletonScDef :: (Hashable b) => ScDef b -> Program b
singletonScDef sc = insScDef sc mempty
parseCoreExprR :: (Monad m) => [Located CoreToken] -> RLPCT m (Expr Var)
parseCoreExprR = liftMaybe . snd . flip runP def . parseCoreExpr
parseCoreExprR :: (Monad m) => [Located CoreToken] -> RLPCT m Expr'
parseCoreExprR = hoistRlpcT generalise . parseCoreExpr
parseCoreProgR :: forall m. (Monad m)
=> [Located CoreToken] -> RLPCT m (Program Var)
parseCoreProgR s = do
let p = runP (parseCoreProg s) def
case p of
(st, Just a) -> do
ddumpast a
pure a
where
ddumpast :: Show a => Program a -> RLPCT m (Program a)
ddumpast p = do
addDebugMsg "dump-parsed-core" . show $ p
pure p
parseCoreProgR :: forall m. (Monad m) => [Located CoreToken] -> RLPCT m Program'
parseCoreProgR = ddumpast <=< (hoistRlpcT generalise . parseCoreProg)
where
ddumpast :: Program' -> RLPCT m Program'
ddumpast p = do
addDebugMsg "dump-parsed-core" . show $ p
pure p
happyBind :: RLPC a -> (a -> RLPC b) -> RLPC b
happyBind m k = m >>= k
@@ -253,7 +245,7 @@ happyBind m k = m >>= k
happyPure :: a -> RLPC a
happyPure a = pure a
doTLPragma :: Pragma -> Program Var -> P (Program Var)
doTLPragma :: Pragma -> Program' -> RLPC Program'
-- TODO: warn unrecognised pragma
doTLPragma (Pragma []) p = pure p

View File

@@ -1,62 +0,0 @@
{-# LANGUAGE TemplateHaskell #-}
module Core.Parse.Types
( P(..)
, psTyVars
, def
, PsName
, mkTypedScDef
)
where
--------------------------------------------------------------------------------
import Control.Applicative
import Control.Monad
import Control.Monad.State
import Data.Default
import Data.Maybe
import Data.Tuple (swap)
import Control.Lens
import Core.Syntax
--------------------------------------------------------------------------------
newtype P a = P { runP :: PState -> (PState, Maybe a) }
deriving Functor
data PState = PState
{ _psTyVars :: [(Name, Kind)]
}
instance Applicative P where
pure a = P (, Just a)
P pf <*> P pa = P \st ->
let (st',mf) = pf st
(st'',ma) = pa st'
in (st'', mf <*> ma)
instance Monad P where
P pa >>= k = P \st ->
let (st',ma) = pa st
in case ma of
Just a -> runP (k a) st'
Nothing -> (st', Nothing)
instance MonadState PState P where
state = P . fmap ((_2 %~ Just) . review swapped)
instance Default PState where
def = undefined
makeLenses ''PState
type PsName = Either Name Var
--------------------------------------------------------------------------------
mkTypedScDef :: Name -> Type -> Name -> [Name] -> Expr Var -> ScDef Var
mkTypedScDef nt tt n as e | nt == n = ScDef n' as' e
where
n' = MkVar n tt
as' = zipWith MkVar as (tt ^.. arrowStops)

View File

@@ -7,38 +7,39 @@ Description : Core ASTs and the like
{-# LANGUAGE TemplateHaskell #-}
-- for recursion-schemes
{-# LANGUAGE DeriveTraversable, TypeFamilies #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE QuantifiedConstraints #-}
module Core.Syntax
(
-- * Core AST
ExprF(..), ExprF'
, ScDef(..), ScDef'
, Program(..), Program'
, Type(..), Kind, pattern (:->), pattern TyInt
, AlterF(..), Alter(..), Alter', AltCon(..)
, pattern Binding, pattern Alter
, Rec(..), Lit(..)
( Expr(..)
, ExprF(..)
, ExprF'(..)
, Type(..)
, pattern TyInt
, Lit(..)
, pattern (:$)
, pattern (:@)
, pattern (:->)
, Binding(..)
, AltCon(..)
, pattern (:=)
, Rec(..)
, Alter(..)
, Name
, Tag
, ScDef(..)
, Module(..)
, Program(..)
, Program'
, Pragma(..)
-- ** Variables and identifiers
, Name, Var(..), Tag, pattern (:^)
, Binding, BindingF(..), pattern (:=), pattern (:$)
, type Binding'
-- ** Working with the fixed point of ExprF
, Expr, Expr'
, pattern Con, pattern Var, pattern App, pattern Lam, pattern Let
, pattern Case, pattern Type, pattern Lit
-- * Pretty-printing
, Pretty(pretty), WithTerseBinds(..)
-- * Optics
, programScDefs, programTypeSigs, programDataTags
, formalising
, HasRHS(_rhs), HasLHS(_lhs)
, _BindingF, _MkVar
-- ** Classy optics
, HasBinders(..), HasArrowStops(..), HasApplicants1(..), HasApplicants(..)
, unliftScDef
, programScDefs
, programTypeSigs
, programDataTags
, Expr'
, ScDef'
, Alter'
, Binding'
, HasRHS(_rhs)
, HasLHS(_lhs)
, Pretty(pretty)
)
where
----------------------------------------------------------------------------------
@@ -46,183 +47,111 @@ import Data.Coerce
import Data.Pretty
import Data.List (intersperse)
import Data.Function ((&))
import Data.Functor.Foldable
import Data.Functor.Foldable.TH (makeBaseFunctor)
import Data.String
import Data.HashMap.Strict (HashMap)
import Data.HashMap.Strict qualified as H
import Data.Hashable
import Data.Foldable (traverse_)
import Data.Functor
import Data.Monoid
import Data.Functor.Classes
import Data.Text qualified as T
import Data.Char
import Data.These
import Data.Bifoldable (bifoldr)
import GHC.Generics (Generic, Generically(..))
import Text.Show.Deriving
import Data.Eq.Deriving
import Data.Kind qualified
import Data.Fix hiding (cata, ana)
import Data.Bifunctor (Bifunctor(..))
import Data.Bifoldable (bifoldr, Bifoldable(..))
import Data.Bifunctor.TH
import Data.Bitraversable
import Data.Functor.Foldable
import Data.Functor.Foldable.TH (makeBaseFunctor)
-- Lift instances for the Core quasiquoters
import Misc
import Misc.Lift1
import Language.Haskell.TH.Syntax (Lift)
-- import Lens.Micro.TH (makeLenses)
-- import Lens.Micro
import Control.Lens
----------------------------------------------------------------------------------
data ExprF b a = VarF Name
| ConF Tag Int -- ^ Con Tag Arity
| CaseF a [AlterF b a]
| LamF [b] a
| LetF Rec [BindingF b a] a
| AppF a a
| LitF Lit
| TypeF Type
deriving (Functor, Foldable, Traversable)
data Expr b = Var Name
| Con Tag Int -- ^ Con Tag Arity
| Case (Expr b) [Alter b]
| Lam [b] (Expr b)
| Let Rec [Binding b] (Expr b)
| App (Expr b) (Expr b)
| Lit Lit
deriving (Show, Read, Lift)
type Expr b = Fix (ExprF b)
instance IsString (ExprF b a) where
fromString = VarF . fromString
instance (IsString (f (Fix f))) => IsString (Fix f) where
fromString = Fix . fromString
deriving instance (Eq b) => Eq (Expr b)
data Type = TyFun
| TyVar Name
| TyApp Type Type
| TyCon Name
| TyForall Var Type
| TyKindType
deriving (Show, Eq, Lift)
type Kind = Type
-- data TyCon = MkTyCon Name Kind
-- deriving (Eq, Show, Lift)
data Var = MkVar Name Type
deriving (Eq, Show, Lift)
pattern (:^) :: Name -> Type -> Var
pattern n :^ t = MkVar n t
instance Hashable Var where
hashWithSalt s (MkVar n _) = hashWithSalt s n
pattern Con :: Tag -> Int -> Expr b
pattern Con t a = Fix (ConF t a)
pattern Var :: Name -> Expr b
pattern Var b = Fix (VarF b)
pattern App :: Expr b -> Expr b -> Expr b
pattern App f x = Fix (AppF f x)
pattern Lam :: [b] -> Expr b -> Expr b
pattern Lam bs e = Fix (LamF bs e)
pattern Let :: Rec -> [Binding b] -> Expr b -> Expr b
pattern Let r bs e = Fix (LetF r bs e)
pattern Case :: Expr b -> [Alter b] -> Expr b
pattern Case e as = Fix (CaseF e as)
pattern Type :: Type -> Expr b
pattern Type t = Fix (TypeF t)
pattern Lit :: Lit -> Expr b
pattern Lit t = Fix (LitF t)
deriving (Show, Read, Lift, Eq)
pattern TyInt :: Type
pattern TyInt = TyCon "Int#"
infixl 2 :$
pattern (:$) :: Expr b -> Expr b -> Expr b
pattern f :$ x = App f x
infixl 2 :@
pattern (:@) :: Type -> Type -> Type
pattern f :@ x = TyApp f x
infixr 1 :->
pattern (:->) :: Type -> Type -> Type
pattern a :-> b = TyApp (TyApp TyFun a) b
data BindingF b a = BindingF b (ExprF b a)
deriving (Functor, Foldable, Traversable)
{-# COMPLETE Binding :: Binding #-}
{-# COMPLETE (:=) :: Binding #-}
data Binding b = Binding b (Expr b)
deriving (Show, Read, Lift)
type Binding b = BindingF b (Fix (ExprF b))
type Binding' = Binding Name
-- collapse = foldFix embed
pattern Binding :: b -> Expr b -> Binding b
pattern Binding k v <- BindingF k (wrapFix -> v)
where Binding k v = BindingF k (unwrapFix v)
{-# COMPLETE (:=) #-}
{-# COMPLETE Binding #-}
deriving instance (Eq b) => Eq (Binding b)
infixl 1 :=
pattern (:=) :: b -> Expr b -> Binding b
pattern k := v = Binding k v
infixl 2 :$
pattern (:$) :: Expr b -> Expr b -> Expr b
pattern f :$ x = App f x
data Alter b = Alter AltCon [b] (Expr b)
deriving (Show, Read, Lift)
data AlterF b a = AlterF AltCon [b] (ExprF b a)
deriving (Functor, Foldable, Traversable)
pattern Alter :: AltCon -> [b] -> Expr b -> Alter b
pattern Alter con bs e <- AlterF con bs (wrapFix -> e)
where Alter con bs e = AlterF con bs (unwrapFix e)
type Alter b = AlterF b (Fix (ExprF b))
type Alter' = Alter Name
-- pattern Alter :: AltCon -> [b] -> Expr b -> Alter b
-- pattern Alter con bs e <- Fix (AlterF con bs (undefined -> e))
-- where Alter con bs e = Fix (AlterF con bs undefined)
deriving instance (Eq b) => Eq (Alter b)
newtype Pragma = Pragma [T.Text]
data Rec = Rec
| NonRec
deriving (Show, Eq, Lift)
deriving (Show, Read, Eq, Lift)
data AltCon = AltData Name
| AltTag Tag
| AltLit Lit
| AltDefault
deriving (Show, Eq, Lift)
deriving (Show, Read, Eq, Lift)
newtype Lit = IntL Int
deriving (Show, Eq, Lift)
deriving (Show, Read, Eq, Lift)
type Name = T.Text
type Tag = Int
data ScDef b = ScDef b [b] (Expr b)
deriving (Show, Lift)
-- unliftScDef :: ScDef b -> Expr b
-- unliftScDef (ScDef _ as e) = Lam as e
unliftScDef :: ScDef b -> Expr b
unliftScDef (ScDef _ as e) = Lam as e
data Module b = Module (Maybe (Name, [Name])) (Program b)
deriving (Show, Lift)
data Program b = Program
{ _programScDefs :: [ScDef b]
, _programTypeSigs :: HashMap b Type
, _programDataTags :: HashMap Name (Tag, Int)
, _programDataTags :: HashMap b (Tag, Int)
-- ^ map constructors to their tag and arity
}
deriving (Generic)
deriving (Show, Lift, Generic)
deriving (Semigroup, Monoid)
via Generically (Program b)
makeLenses ''Program
-- makeBaseFunctor ''Expr
makeBaseFunctor ''Expr
pure []
-- this is a weird optic, stronger than Lens and Prism, but weaker than Iso.
@@ -236,115 +165,65 @@ type ExprF' = ExprF Name
type Program' = Program Name
type Expr' = Expr Name
type ScDef' = ScDef Name
-- type Alter' = Alter Name
-- type Binding' = Binding Name
type Alter' = Alter Name
type Binding' = Binding Name
-- instance IsString (Expr b) where
-- fromString = Var . fromString
instance IsString (Expr b) where
fromString = Var . fromString
instance IsString Type where
fromString "" = error "IsString Type string may not be empty"
fromString s
| isUpper c = TyCon . fromString $ s
| otherwise = TyVar . fromString $ s
where (c:_) = s
----------------------------------------------------------------------------------
class HasRHS s t a b | s -> a, t -> b, s b -> t, t a -> s where
_rhs :: Lens s t a b
instance HasRHS (AlterF b a) (AlterF b a') (ExprF b a) (ExprF b a') where
instance HasRHS (Alter b) (Alter b) (Expr b) (Expr b) where
_rhs = lens
(\ (AlterF _ _ e) -> e)
(\ (AlterF t as _) e' -> AlterF t as e')
(\ (Alter _ _ e) -> e)
(\ (Alter t as _) e' -> Alter t as e')
instance HasRHS (ScDef b) (ScDef b) (Expr b) (Expr b) where
_rhs = lens
(\ (ScDef _ _ e) -> e)
(\ (ScDef n as _) e' -> ScDef n as e')
instance HasRHS (BindingF b a) (BindingF b' a') (ExprF b a) (ExprF b' a')
instance HasRHS (Binding b) (Binding b) (Expr b) (Expr b) where
_rhs = lens
(\ (_ := e) -> e)
(\ (k := _) e' -> k := e')
class HasLHS s t a b | s -> a, t -> b, s b -> t, t a -> s where
_lhs :: Lens s t a b
instance HasLHS (Alter b) (Alter b) (AltCon, [b]) (AltCon, [b]) where
_lhs = lens
(\ (Alter a bs _) -> (a,bs))
(\ (Alter _ _ e) (a',bs') -> Alter a' bs' e)
instance HasLHS (ScDef b) (ScDef b) (b, [b]) (b, [b]) where
_lhs = lens
(\ (ScDef n as _) -> (n,as))
(\ (ScDef _ _ e) (n',as') -> ScDef n' as' e)
-- instance HasLHS (Binding b) (Binding b) b b where
-- _lhs = lens
-- (\ (k := _) -> k)
-- (\ (_ := e) k' -> k' := e)
-- | This is not a valid isomorphism for expressions containing lambdas whose
-- bodies are themselves lambdas with multiple arguments:
--
-- >>> [coreExpr|\x -> \y z -> x|] ^. from (from formalising)
-- Lam ["x"] (Lam ["y"] (Lam ["z"] (Var "x")))
-- >>> [coreExpr|\x -> \y z -> x|]
-- Lam ["x"] (Lam ["y","z"] (Var "x"))
--
-- For this reason, it's best to consider 'formalising' as if it were two
-- unrelated unidirectional getters.
formalising :: Iso (Expr a) (Expr b) (Expr a) (Expr b)
formalising = iso sa bt where
sa :: Expr a -> Expr a
sa = ana \case
Lam [b] e -> LamF [b] e
Lam (b:bs) e -> LamF [b] (Lam bs e)
Let r (b:bs) e -> LetF r [b] (Let r bs e)
x -> project x
bt :: Expr b -> Expr b
bt = cata \case
LamF [b] (Lam bs e) -> Lam (b:bs) e
LetF r [b] (Let r' bs e) | r == r' -> Let r (b:bs) e
x -> embed x
instance HasLHS (Binding b) (Binding b) b b where
_lhs = lens
(\ (k := _) -> k)
(\ (_ := e) k' -> k' := e)
--------------------------------------------------------------------------------
newtype WithTerseBinds a = WithTerseBinds a
class MakeTerse a where
type AsTerse a :: Data.Kind.Type
asTerse :: a -> AsTerse a
instance MakeTerse Var where
type AsTerse Var = Name
asTerse (MkVar n _) = n
instance (Hashable b, Pretty b, Pretty (AsTerse b), MakeTerse b)
=> Pretty (WithTerseBinds (Program b)) where
pretty (WithTerseBinds p)
= (datatags <> "\n")
$+$ defs
where
datatags = ifoldrOf (programDataTags . ifolded) cataDataTag mempty p
defs = vlinesOf (programJoinedDefs . to prettyGroup) p
programJoinedDefs :: Fold (Program b) (These (b, Type) (ScDef b))
programJoinedDefs = folding $ \p ->
foldMapOf programTypeSigs thisTs p
`u` foldMapOf programScDefs thatSc p
where u = H.unionWith unionThese
thisTs = ifoldMap @b @(HashMap b)
(\n t -> H.singleton n (This (n,t)))
thatSc = foldMap $ \sc ->
H.singleton (sc ^. _lhs . _1) (That sc)
prettyGroup :: These (b, Type) (ScDef b) -> Doc
prettyGroup = bifoldr vs vs mempty
. bimap (uncurry prettyTySig')
(pretty . WithTerseBinds)
where vs = vsepTerm ";"
cataDataTag n (t,a) acc = prettyDataTag n t a $+$ acc
-- TODO: print type sigs with corresponding scdefs
-- TODO: emit pragmas for datatags
instance (Hashable b, Pretty b) => Pretty (Program b) where
pretty p = (datatags <> "\n")
$+$ defs
pretty p = ifoldrOf (programDataTags . ifolded) cataDataTag mempty p
$+$ vlinesOf (programJoinedDefs . to prettyGroup) p
where
datatags = ifoldrOf (programDataTags . ifolded) cataDataTag mempty p
defs = vlinesOf (programJoinedDefs . to prettyGroup) p
programJoinedDefs :: Fold (Program b) (These (b, Type) (ScDef b))
programJoinedDefs = folding $ \p ->
foldMapOf programTypeSigs thisTs p
@@ -357,339 +236,67 @@ instance (Hashable b, Pretty b) => Pretty (Program b) where
H.singleton (sc ^. _lhs . _1) (That sc)
prettyGroup :: These (b, Type) (ScDef b) -> Doc
prettyGroup = bifoldr vs vs mempty
. bimap (uncurry prettyTySig) pretty
where vs = vsepTerm ";"
prettyGroup = bifoldr ($$) ($$) mempty . bimap prettyTySig pretty
prettyTySig (n,t) = hsep [ttext n, "::", pretty t]
unionThese (This a) (That b) = These a b
unionThese (That b) (This a) = These a b
unionThese (These a b) _ = These a b
cataDataTag n (t,a) acc = prettyDataTag n t a $+$ acc
unionThese :: These a b -> These a b -> These a b
unionThese (This a) (That b) = These a b
unionThese (That b) (This a) = These a b
unionThese (These a b) _ = These a b
prettyDataTag :: (Pretty n, Pretty t, Pretty a)
=> n -> t -> a -> Doc
prettyDataTag n t a =
hsep ["{-#", "PackData", ttext n, ttext t, ttext a, "#-}"]
prettyTySig :: (Pretty n, Pretty t) => n -> t -> Doc
prettyTySig n t = hsep [ttext n, ":", pretty t]
prettyTySig' :: (MakeTerse n, Pretty (AsTerse n), Pretty t) => n -> t -> Doc
prettyTySig' n t = hsep [ttext (asTerse n), ":", pretty t]
-- Pretty Type
-- TyApp | appPrec | left
-- (:->) | appPrec-1 | right
prettyDataTag n t a =
hsep ["{-#", "PackData", ttext n, ttext t, ttext a, "#-}"]
instance Pretty Type where
prettyPrec _ (TyVar n) = ttext n
prettyPrec _ TyFun = "(->)"
prettyPrec _ (TyCon n) = ttext n
prettyPrec p (a :-> b) = maybeParens (p>appPrec-1) $
hsep [prettyPrec appPrec a, "->", prettyPrec (appPrec-1) b]
prettyPrec p (TyApp f x) = maybeParens (p>appPrec) $
prettyPrec appPrec f <+> prettyPrec appPrec1 x
prettyPrec p (TyForall a m) = maybeParens (p>appPrec-2) $
"" <+> (prettyPrec appPrec1 a <> ".") <+> pretty m
prettyPrec _ TyKindType = "Type"
instance (Pretty b, Pretty (AsTerse b), MakeTerse b)
=> Pretty (WithTerseBinds (ScDef b)) where
pretty (WithTerseBinds sc) = hsep [name, as, "=", hang empty 1 e]
where
name = ttext $ sc ^. _lhs . _1 . to asTerse
as = sc & hsepOf (_lhs . _2 . each . to asTerse . to ttext)
e = pretty $ sc ^. _rhs
prettyPrec _ (TyVar n) = ttext n
prettyPrec _ TyFun = "(->)"
prettyPrec _ (TyCon n) = ttext n
prettyPrec p (a :-> b) = maybeParens (p>0) $
hsep [prettyPrec 1 a, "->", prettyPrec 0 b]
prettyPrec p (TyApp f x) = maybeParens (p>1) $
prettyPrec 1 f <+> prettyPrec 2 x
instance (Pretty b) => Pretty (ScDef b) where
pretty sc = hsep [name, as, "=", hang empty 1 e]
pretty sc = hsep [name, as, "=", hang empty 1 e, ";"]
where
name = ttext $ sc ^. _lhs . _1
as = sc & hsepOf (_lhs . _2 . each . to ttext)
e = pretty $ sc ^. _rhs
instance (Pretty (f (Fix f))) => Pretty (Fix f) where
prettyPrec d (Fix f) = prettyPrec d f
-- Pretty Expr
-- LamF | appPrec1 | right
-- AppF | appPrec | left
instance (Pretty b, Pretty a) => Pretty (ExprF b a) where
prettyPrec _ (VarF n) = ttext n
prettyPrec _ (ConF t a) = "Pack{" <> (ttext t <+> ttext a) <> "}"
prettyPrec p (LamF bs e) = maybeParens (p>0) $
hsep ["λ", hsep (prettyPrec appPrec1 <$> bs), "->", pretty e]
prettyPrec p (LetF r bs e) = maybeParens (p>0)
$ hsep [pretty r, explicitLayout bs]
$+$ hsep ["in", pretty e]
prettyPrec p (AppF f x) = maybeParens (p>appPrec) $
prettyPrec appPrec f <+> prettyPrec appPrec1 x
prettyPrec p (LitF l) = prettyPrec p l
prettyPrec p (CaseF e as) = maybeParens (p>0) $
instance (Pretty b) => Pretty (Expr b) where
prettyPrec _ (Var n) = ttext n
prettyPrec _ (Con t a) = "Pack{" <> (ttext t <+> ttext a) <> "}"
prettyPrec _ (Lam bs e) = hsep ["λ", hsep (prettyPrec 1 <$> bs), "->", pretty e]
prettyPrec _ (Let r bs e) = hsep [word, explicitLayout bs]
$+$ hsep ["in", pretty e]
where word = if r == Rec then "letrec" else "let"
prettyPrec p (App f x) = maybeParens (p>0) $
prettyPrec 0 f <+> prettyPrec 1 x
prettyPrec _ (Lit l) = pretty l
prettyPrec p (Case e as) = maybeParens (p>0) $
"case" <+> pretty e <+> "of"
$+$ nest 2 (explicitLayout as)
prettyPrec p (TypeF t) = "@" <> prettyPrec appPrec1 t
instance Pretty Rec where
pretty Rec = "letrec"
pretty NonRec = "let"
instance (Pretty b, Pretty a) => Pretty (AlterF b a) where
pretty (AlterF c as e) =
instance (Pretty b) => Pretty (Alter b) where
pretty (Alter c as e) =
hsep [pretty c, hsep (pretty <$> as), "->", pretty e]
instance Pretty AltCon where
pretty (AltData n) = ttext n
pretty (AltLit l) = pretty l
pretty (AltTag t) = "<" <> ttext t <> ">"
pretty (AltTag t) = ttext t
pretty AltDefault = "_"
instance Pretty Lit where
pretty (IntL n) = ttext n
instance (Pretty b, Pretty a) => Pretty (BindingF b a) where
pretty (BindingF k v) = hsep [pretty k, "=", pretty v]
instance (Pretty b) => Pretty (Binding b) where
pretty (k := v) = hsep [pretty k, "=", pretty v]
explicitLayout :: (Pretty a) => [a] -> Doc
explicitLayout as = vcat inner <+> "}" where
inner = zipWith (<+>) delims (pretty <$> as)
delims = "{" : repeat ";"
instance Pretty Var where
prettyPrec p (MkVar n t) = maybeParens (p>0) $
hsep [pretty n, ":", pretty t]
--------------------------------------------------------------------------------
-- instance Functor Alter where
-- fmap f (Alter con bs e) = Alter con (f <$> bs) e'
-- where
-- e' = foldFix (embed . bimap' f id) e
-- bimap' = $(makeBimap ''ExprF)
-- instance Foldable Alter where
-- instance Traversable Alter where
-- instance Functor Binding where
-- instance Foldable Binding where
-- instance Traversable Binding where
liftShowsPrecExpr :: (Show b)
=> (Int -> a -> ShowS)
-> ([a] -> ShowS)
-> Int -> ExprF b a -> ShowS
liftShowsPrecExpr = $(makeLiftShowsPrec ''ExprF)
showsPrec1Expr :: (Show b, Show a)
=> Int -> ExprF b a -> ShowS
showsPrec1Expr = $(makeShowsPrec1 ''ExprF)
instance (Show b) => Show1 (AlterF b) where
liftShowsPrec sp spl d (AlterF con bs e) =
showsTernaryWith showsPrec showsPrec (liftShowsPrecExpr sp spl)
"AlterF" d con bs e
instance (Show b) => Show1 (BindingF b) where
liftShowsPrec sp spl d (BindingF k v) =
showsBinaryWith showsPrec (liftShowsPrecExpr sp spl)
"BindingF" d k v
instance (Show b, Show a) => Show (BindingF b a) where
showsPrec d (BindingF k v)
= showParen (d > 10)
$ showString "BindingF" . showChar ' '
. showsPrec 11 k . showChar ' '
. showsPrec1Expr 11 v
instance (Show b, Show a) => Show (AlterF b a) where
showsPrec d (AlterF con bs e)
= showParen (d > 10)
$ showString "AlterF" . showChar ' '
. showsPrec 11 con . showChar ' '
. showsPrec 11 bs . showChar ' '
. showsPrec1Expr 11 e
deriveShow1 ''ExprF
deriving instance (Show b, Show a) => Show (ExprF b a)
-- deriving instance (Show b, Show a) => Show (BindingF b a)
-- deriving instance (Show b, Show a) => Show (AlterF b a)
deriving instance Show b => Show (ScDef b)
deriving instance Show b => Show (Program b)
bimapExpr :: (b -> b') -> (a -> a')
-> ExprF b a -> ExprF b' a'
bimapExpr = $(makeBimap ''ExprF)
bifoldrExpr :: (b -> c -> c)
-> (a -> c -> c)
-> c -> ExprF b a -> c
bifoldrExpr = $(makeBifoldr ''ExprF)
bitraverseExpr :: Applicative f
=> (b -> f b')
-> (a -> f a')
-> ExprF b a -> f (ExprF b' a')
bitraverseExpr = $(makeBitraverse ''ExprF)
instance Bifunctor AlterF where
bimap f g (AlterF con bs e) = AlterF con (f <$> bs) (bimapExpr f g e)
instance Bifunctor BindingF where
bimap f g (BindingF k v) = BindingF (f k) (bimapExpr f g v)
instance Bifoldable AlterF where
bifoldr f g z (AlterF con bs e) = bifoldrExpr f g z' e where
z' = foldr f z bs
instance Bitraversable AlterF where
bitraverse f g (AlterF con bs e) =
AlterF con <$> traverse f bs <*> bitraverseExpr f g e
instance Bifoldable BindingF where
bifoldr f g z (BindingF k v) = bifoldrExpr f g (f k z) v
instance Bitraversable BindingF where
bitraverse f g (BindingF k v) =
BindingF <$> f k <*> bitraverseExpr f g v
deriveBifunctor ''ExprF
deriveBifoldable ''ExprF
deriveBitraversable ''ExprF
instance Lift b => Lift1 (ExprF b) where
lift1 (VarF k) = liftCon 'VarF (lift k)
lift1 (AppF f x) = liftCon2 'AppF (lift f) (lift x)
lift1 (LamF b e) = liftCon2 'LamF (lift b) (lift e)
lift1 (LetF r bs e) = liftCon3 'LetF (lift r) (lift bs) (lift e)
lift1 (CaseF e as) = liftCon2 'CaseF (lift e) (lift as)
lift1 (TypeF t) = liftCon 'TypeF (lift t)
lift1 (LitF l) = liftCon 'LitF (lift l)
lift1 (ConF t a) = liftCon2 'ConF (lift t) (lift a)
deriving instance (Lift b, Lift a) => Lift (ExprF b a)
deriving instance (Lift b, Lift a) => Lift (BindingF b a)
deriving instance (Lift b, Lift a) => Lift (AlterF b a)
deriving instance Lift b => Lift (ScDef b)
deriving instance Lift b => Lift (Program b)
--------------------------------------------------------------------------------
class HasApplicants1 s t a b | s -> a, t -> b, s b -> t, t a -> s where
applicants1 :: Traversal s t a b
class HasApplicants s t a b | s -> a, t -> b, s b -> t, t a -> s where
applicants :: Traversal s t a b
instance HasApplicants1 Type Type Type Type where
applicants1 k (TyApp f x) = TyApp <$> applicants1 k f <*> k x
applicants1 k x = k x
instance HasApplicants Type Type Type Type where
applicants k (TyApp f x) = TyApp <$> applicants k f <*> k x
applicants k x = pure x
-- instance HasArguments (ExprF b (Fix (ExprF b))) (ExprF b (Fix (ExprF b)))
-- (Fix (ExprF b)) (Fix (ExprF b)) where
-- arguments k (AppF f x) = AppF <$> arguments k f <*> k x
-- arguments k x = unwrapFix <$> k (wrapFix x)
-- instance HasArguments (f (Fix f)) (f (Fix f)) (Fix f) (Fix f)
-- => HasArguments (Fix f) (Fix f) (Fix f) (Fix f) where
-- arguments :: forall g. Applicative g
-- => LensLike' g (Fix f) (Fix f)
-- arguments k (Fix f) = Fix <$> arguments k f
-- arguments :: Traversal' (Expr b) (Expr b)
-- arguments k (App f x) = App <$> arguments k f <*> k x
-- arguments k x = k x
class HasBinders s t a b | s -> a, t -> b, s b -> t, t a -> s where
binders :: Traversal s t a b
instance HasBinders (ScDef b) (ScDef b') b b' where
binders k (ScDef b as e) = ScDef <$> k b <*> traverse k as <*> binders k e
instance (Hashable b, Hashable b')
=> HasBinders (Program b) (Program b') b b' where
binders :: forall f. (Applicative f)
=> LensLike f (Program b) (Program b') b b'
binders k p
= Program
<$> traverse (binders k) (_programScDefs p)
<*> (getAp . ifoldMap toSingleton $ _programTypeSigs p)
<*> pure (_programDataTags p)
where
toSingleton :: b -> Type -> Ap f (HashMap b' Type)
toSingleton b t = Ap $ (`H.singleton` t) <$> k b
instance HasBinders a a' b b'
=> HasBinders (ExprF b a) (ExprF b' a') b b' where
binders :: forall f. (Applicative f)
=> LensLike f (ExprF b a) (ExprF b' a') b b'
binders k = go where
go :: ExprF b a -> f (ExprF b' a')
go (LamF bs e) = LamF <$> traverse k bs <*> binders k e
go (CaseF e as) = CaseF <$> binders k e <*> eachbind as
go (LetF r bs e) = LetF r <$> eachbind bs <*> binders k e
go f = bitraverse k (binders k) f
eachbind :: forall p. Bitraversable p => [p b a] -> f [p b' a']
eachbind bs = bitraverse k (binders k) `traverse` bs
instance HasBinders a a b b'
=> HasBinders (AlterF b a) (AlterF b' a) b b' where
binders k (AlterF con bs e) =
AlterF con <$> traverse k bs <*> traverseOf binders k e
instance HasBinders a a b b'
=> HasBinders (BindingF b a) (BindingF b' a) b b' where
binders k (BindingF b v) = BindingF <$> k b <*> binders k v
instance (HasBinders (f b (Fix (f b))) (f b' (Fix (f b'))) b b')
=> HasBinders (Fix (f b)) (Fix (f b')) b b' where
binders k (Fix f) = Fix <$> binders k f
class HasArrowStops s t a b | s -> a, t -> b, s b -> t, t a -> s where
arrowStops :: Traversal s t a b
instance HasArrowStops Type Type Type Type where
arrowStops k (s :-> t) = (:->) <$> k s <*> arrowStops k t
arrowStops k t = k t
--------------------------------------------------------------------------------
liftEqExpr :: (Eq b)
=> (a -> a' -> Bool)
-> ExprF b a -> ExprF b a' -> Bool
liftEqExpr = $(makeLiftEq ''ExprF)
instance (Eq b, Eq a) => Eq (BindingF b a) where
BindingF ka va == BindingF kb vb =
ka == kb && va `eq` vb
where eq = liftEqExpr (==)
instance (Eq b, Eq a) => Eq (AlterF b a) where
AlterF cona bsa ea == AlterF conb bsb eb =
cona == conb && bsa == bsb && ea `eq` eb
where eq = liftEqExpr (==)
instance (Eq b) => Eq1 (AlterF b) where
liftEq f (AlterF cona bsa ea) (AlterF conb bsb eb) =
cona == conb && bsa == bsb && ea `eq` eb
where eq = liftEqExpr f
instance (Eq b) => Eq1 (BindingF b) where
liftEq f (BindingF ka va) (BindingF kb vb) =
ka == kb && va `eq` vb
where eq = liftEqExpr f
deriveEq1 ''ExprF
deriving instance (Eq b, Eq a) => Eq (ExprF b a)
makePrisms ''BindingF
makePrisms ''Var

View File

@@ -1,235 +0,0 @@
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE OverloadedLists #-}
module Core.SystemF
( lintCoreProgR
)
where
--------------------------------------------------------------------------------
import GHC.Generics (Generic, Generically(..))
import Data.HashMap.Strict (HashMap)
import Data.HashMap.Strict qualified as H
import Data.Function (on)
import Data.Traversable
import Data.Foldable
import Data.List.Extra
import Control.Monad.Utils
import Control.Monad
import Data.Text qualified as T
import Data.Pretty
import Text.Printf
import Control.Comonad
import Control.Comonad.Cofree
import Data.Fix
import Data.Functor
import Control.Lens hiding ((:<))
import Control.Lens.Unsound
import Compiler.RLPC
import Compiler.RlpcError
import Core
--------------------------------------------------------------------------------
data Gamma = Gamma
{ _gammaVars :: HashMap Name Type
, _gammaTyVars :: HashMap Name Kind
, _gammaTyCons :: HashMap Name Kind
}
deriving (Generic)
deriving (Semigroup, Monoid)
via (Generically Gamma)
makeLenses ''Gamma
lintCoreProgR :: (Monad m) => Program Var -> RLPCT m (Program Name)
lintCoreProgR = undefined
lint :: Program Var -> Program Name
lint = undefined
type ET = Cofree (ExprF Var) Type
type SysF = Either SystemFError
data SystemFError = SystemFErrorUndefinedVariable Name
| SystemFErrorKindMismatch Kind Kind
| SystemFErrorCouldNotMatch Type Type
deriving Show
instance IsRlpcError SystemFError where
liftRlpcError = \case
SystemFErrorUndefinedVariable n ->
undefinedVariableErr n
SystemFErrorKindMismatch k k' ->
Text [ T.pack $ printf "Could not match kind `%s' with `%s'"
(pretty k) (pretty k')
]
SystemFErrorCouldNotMatch t t' ->
Text [ T.pack $ printf "Could not match type `%s' with `%s'"
(pretty t) (pretty t')
]
justLintCoreExpr = fmap (fmap (prettyPrec appPrec1)) . lintE demoContext
lintE :: Gamma -> Expr Var -> SysF ET
lintE g = \case
Var n -> lookupVar g n <&> (:< VarF n)
Lit (IntL n) -> pure $ TyInt :< LitF (IntL n)
Type t -> kindOf g t <&> (:< TypeF t)
App f x
-- type application
| Right (TyForall (a :^ k) m :< f') <- lintE g f
, Right (k' :< TypeF t) <- lintE g x
, k == k'
-> pure $ subst a t m :< f'
-- value application
| Right fw@((s :-> t) :< _) <- lintE g f
, Right xw@(s' :< _) <- lintE g x
, s == s'
-> pure $ t :< AppF fw xw
Lam bs e -> do
e'@(t :< _) <- lintE g' e
pure $ foldr arrowify t bs :< LamF bs e'
where
g' = foldMap suppl bs <> g
suppl (MkVar n t)
| isKind t = mempty & gammaTyVars %~ H.insert n t
| otherwise = mempty & gammaVars %~ H.insert n t
arrowify (MkVar n s) s'
| isKind s = TyForall (n :^ s) s'
| otherwise = s :-> s'
Let Rec bs e -> do
e'@(t :< _) <- lintE g' e
bs' <- (uncurry checkBind . (_2 %~ wrapFix)) `traverse` binds
pure $ t :< LetF Rec bs' e'
where
binds = bs ^.. each . _BindingF
vs = binds ^.. each . _1 . _MkVar
g' = supplementVars vs g
checkBind v@(MkVar n t) e = case lintE g' e of
Right (t' :< e') | t == t' -> Right (BindingF v e')
| otherwise -> Left (SystemFErrorCouldNotMatch t t')
Left e -> Left e
Let NonRec bs e -> do
(g',bs') <- mapAccumLM checkBind g bs
e'@(t :< _) <- lintE g' e
pure $ t :< LetF NonRec bs' e'
where
checkBind :: Gamma -> BindingF Var (Expr Var)
-> SysF (Gamma, BindingF Var ET)
checkBind g (BindingF v@(n :^ t) e) = case lintE g (wrapFix e) of
Right (t' :< e')
| t == t' -> Right (supplementVar n t g, BindingF v e')
| otherwise -> Left (SystemFErrorCouldNotMatch t t')
Left e -> Left e
Case e as -> do
e'@(et :< _) <- lintE g e
(ts,as') <- unzip <$> checkAlt et `traverse` as
case allUnify ts of
Just err -> Left err
Nothing -> pure $ head ts :< CaseF e' as'
where
checkAlt :: Type -> Alter Var -> SysF (Type, AlterF Var ET)
checkAlt scrutineeType (AlterF (AltData con) bs e) = do
ct <- lookupVar g con
ct' <- foldrMOf applicants (elimForall g) ct scrutineeType
zipWithM_ fzip bs (ct' ^.. arrowStops)
(t :< e') <- lintE (supplementVars (varsToPairs bs) g) (wrapFix e)
pure (t, AlterF (AltData con) bs e')
where
fzip (MkVar _ t) t'
| t == t' = Right ()
| otherwise = Left (SystemFErrorCouldNotMatch t t')
allUnify :: [Type] -> Maybe SystemFError
allUnify [] = Nothing
allUnify [t] = Nothing
allUnify (t:t':ts)
| t == t' = allUnify ts
| otherwise = Just (SystemFErrorCouldNotMatch t t')
elimForall :: Gamma -> Type -> Type -> SysF Type
elimForall g t (TyForall (n :^ k) m) = do
k' <- kindOf g t
case k == k' of
True -> pure $ subst n t m
False -> Left $ SystemFErrorKindMismatch k k'
elimForall _ m _ = pure m
varsToPairs :: [Var] -> [(Name, Type)]
varsToPairs = toListOf (each . _MkVar)
checkAgainst :: Gamma -> Var -> Expr Var -> SysF ET
checkAgainst g v@(MkVar n t) e = case lintE g e of
Right e'@(t' :< _) | t == t' -> Right e'
| otherwise -> Left (SystemFErrorCouldNotMatch t t')
Left a -> Left a
supplementVars :: [(Name, Type)] -> Gamma -> Gamma
supplementVars vs = gammaVars <>~ H.fromList vs
supplementVar :: Name -> Type -> Gamma -> Gamma
supplementVar n t = gammaVars %~ H.insert n t
supplementTyVar :: Name -> Kind -> Gamma -> Gamma
supplementTyVar n t = gammaTyVars %~ H.insert n t
subst :: Name -> Type -> Type -> Type
subst k v (TyVar n) | k == n = v
subst k v (TyForall (MkVar n k') t)
| k /= n = TyForall (MkVar n k') (subst k v t)
| otherwise = TyForall (MkVar n k') t
subst k v (TyApp f x) = (TyApp `on` subst k v) f x
subst _ _ x = x
isKind :: Type -> Bool
isKind (s :-> t) = isKind s && isKind t
isKind TyKindType = True
isKind _ = False
kindOf :: Gamma -> Type -> SysF Kind
kindOf g (TyVar n) = lookupTyVar g n
kindOf _ TyKindType = pure TyKindType
kindOf g (TyCon n) = lookupCon g n
kindOf _ e = error (show e)
lookupCon :: Gamma -> Name -> SysF Kind
lookupCon g n = case g ^. gammaTyCons . at n of
Just k -> Right k
Nothing -> Left (SystemFErrorUndefinedVariable n)
lookupVar :: Gamma -> Name -> SysF Type
lookupVar g n = case g ^. gammaVars . at n of
Just t -> Right t
Nothing -> Left (SystemFErrorUndefinedVariable n)
lookupTyVar :: Gamma -> Name -> SysF Kind
lookupTyVar g n = case g ^. gammaTyVars . at n of
Just k -> Right k
Nothing -> Left (SystemFErrorUndefinedVariable n)
demoContext :: Gamma
demoContext = Gamma
{ _gammaVars =
[ ("id", TyForall ("a" :^ TyKindType) $ TyVar "a" :-> TyVar "a")
, ("Just", TyForall ("a" :^ TyKindType) $
TyVar "a" :-> (TyCon "Maybe" `TyApp` TyVar "a"))
, ("Nothing", TyForall ("a" :^ TyKindType) $
TyCon "Maybe" `TyApp` TyVar "a")
]
, _gammaTyVars = []
, _gammaTyCons =
[ ("Int#", TyKindType)
, ("Maybe", TyKindType :-> TyKindType)
]
}

View File

@@ -5,8 +5,8 @@ Description : Core quasiquoters
module Core.TH
( coreExpr
, coreProg
-- , coreExprT
-- , coreProgT
, coreExprT
, coreProgT
)
where
----------------------------------------------------------------------------------
@@ -33,18 +33,16 @@ coreExpr :: QuasiQuoter
coreExpr = mkqq $ lexCoreR >=> parseCoreExprR
-- | Type-checked @coreProg@
-- coreProgT :: QuasiQuoter
-- coreProgT = mkqq $ lexCoreR >=> parseCoreProgR >=> checkCoreProgR
coreProgT :: QuasiQuoter
coreProgT = mkqq $ lexCoreR >=> parseCoreProgR >=> checkCoreProgR
-- coreExprT :: QuasiQuoter
-- coreExprT = mkqq $ lexCoreR >=> parseCoreExprR >=> checkCoreExprR g
-- where
-- g = [ ("+#", TyInt :-> TyInt :-> TyInt)
-- , ("id", TyForall (MkVar "a" TyKindType) $
-- TyVar "a" :-> TyVar "a")
-- , ("fix", TyForall (MkVar "a" TyKindType) $
-- (TyVar "a" :-> TyVar "a") :-> TyVar "a")
-- ]
coreExprT :: QuasiQuoter
coreExprT = mkqq $ lexCoreR >=> parseCoreExprR >=> checkCoreExprR g
where
g = [ ("+#", TyCon "Int#" :-> TyCon "Int#" :-> TyCon "Int#")
, ("id", TyCon "a" :-> TyCon "a")
, ("fix", (TyCon "a" :-> TyCon "a") :-> TyCon "a")
]
mkqq :: (Lift a) => (Text -> RLPCIO a) -> QuasiQuoter
mkqq p = QuasiQuoter

View File

@@ -2,6 +2,8 @@ module Core.Utils
( programRhss
, programGlobals
, isAtomic
-- , insertModule
, extractProgram
, freeVariables
)
where
@@ -11,7 +13,7 @@ import Data.Functor.Foldable
import Data.Set (Set)
import Data.Set qualified as S
import Core.Syntax
import Control.Lens
import Lens.Micro
import GHC.Exts (IsList(..))
----------------------------------------------------------------------------------
@@ -28,29 +30,34 @@ isAtomic _ = False
----------------------------------------------------------------------------------
freeVariables :: Expr b -> Set b
freeVariables = undefined
-- TODO: export list awareness
-- insertModule :: Module b -> Program b -> Program b
-- insertModule (Module _ p) = programScDefs %~ (<>m)
-- freeVariables :: Expr' -> Set Name
-- freeVariables = cata go
-- where
-- go :: ExprF Name (Set Name) -> Set Name
-- go (VarF k) = S.singleton k
-- -- TODO: collect free vars in rhss of bs
-- go (LetF _ bs e) = (e `S.union` esFree) `S.difference` ns
-- where
-- es = bs ^.. each . _rhs :: [Expr']
-- ns = S.fromList $ bs ^.. each . _lhs
-- -- TODO: this feels a little wrong. maybe a different scheme is
-- -- appropriate
-- esFree = foldMap id $ freeVariables <$> es
extractProgram :: Module b -> Program b
extractProgram (Module _ p) = p
-- go (CaseF e as) = e `S.union` asFree
-- where
-- -- asFree = foldMap id $ freeVariables <$> (fmap altToLam as)
-- asFree = foldMap (freeVariables . altToLam) as
-- -- we map alts to lambdas to avoid writing a 'freeVariablesAlt'
-- altToLam (Alter _ ns e) = Lam ns e
-- go (LamF bs e) = e `S.difference` (S.fromList bs)
-- go e = foldMap id e
----------------------------------------------------------------------------------
freeVariables :: Expr' -> Set Name
freeVariables = cata go
where
go :: ExprF Name (Set Name) -> Set Name
go (VarF k) = S.singleton k
-- TODO: collect free vars in rhss of bs
go (LetF _ bs e) = (e `S.union` esFree) `S.difference` ns
where
es = bs ^.. each . _rhs :: [Expr']
ns = S.fromList $ bs ^.. each . _lhs
-- TODO: this feels a little wrong. maybe a different scheme is
-- appropriate
esFree = foldMap id $ freeVariables <$> es
go (CaseF e as) = e `S.union` asFree
where
asFree = foldMap id $ freeVariables <$> (fmap altToLam as)
-- we map alts to lambdas to avoid writing a 'freeVariablesAlt'
altToLam (Alter _ ns e) = Lam ns e
go (LamF bs e) = e `S.difference` (S.fromList bs)
go e = foldMap id e

View File

@@ -20,10 +20,12 @@ import Control.Monad.State.Lazy
import Control.Arrow ((>>>))
import Data.Text qualified as T
import Data.HashMap.Strict (HashMap)
import Debug.Trace
import Numeric (showHex)
import Data.Pretty
import Compiler.RLPC
-- import Lens.Micro.Platform
import Control.Lens
import Core.Syntax
import Core.Utils
@@ -116,7 +118,7 @@ floatNonStrictCases g = goE
goE e
traverse_ goE altBodies
pure e'
goC (App f x) = App <$> goC f <*> goC x
goC (f :$ x) = (:$) <$> goC f <*> goC x
goC (Let r bs e) = Let r <$> bs' <*> goE e
where bs' = travBs goC bs
goC (Lit l) = pure (Lit l)
@@ -128,9 +130,10 @@ floatNonStrictCases g = goE
-- extract the right-hand sides of a list of bindings, traverse each
-- one, and return the original list of bindings
travBs :: (Expr' -> Floater Expr') -> [Binding'] -> Floater [Binding']
travBs c bs = undefined
travBs c bs = bs ^.. each . _rhs
& traverse goC
& const (pure bs)
-- ^ ??? what the fuck?
-- ^ 24/02/22: what is this shit lol?
-- when provided with a case expr, floatCase will float the case into a
-- supercombinator of its free variables. the sc is returned along with an

View File

@@ -1,3 +1,4 @@
{-# LANGUAGE ImplicitParams #-}
{-
Module : Data.Heap
Description : A model heap used by abstract machine
@@ -26,7 +27,10 @@ import Data.Map (Map, (!?))
import Debug.Trace
import Data.Map.Strict qualified as M
import Data.List (intersect)
import GHC.Stack (HasCallStack)
import Data.IORef
import System.IO.Unsafe
import Control.Monad
import GHC.Stack
import Control.Lens
----------------------------------------------------------------------------------
@@ -74,13 +78,19 @@ instance Traversable Heap where
----------------------------------------------------------------------------------
alloc :: Heap a -> a -> (Heap a, Addr)
alloc (Heap (u:us) m) v = (Heap us (M.insert u v m), u)
godhelpme :: IORef Int
godhelpme = unsafePerformIO $ newIORef 0
alloc :: HasCallStack => Heap a -> a -> (Heap a, Addr)
alloc (Heap (u:us) m) v = unsafePerformIO $ do
-- i <- readIORef godhelpme
-- when (i >= 60000) $ error "fuck"
-- modifyIORef godhelpme succ
pure (Heap us (M.insert u v m), u)
alloc (Heap [] _) _ = error "heap model ran out of memory..."
update :: Addr -> a -> Heap a -> Heap a
update :: HasCallStack => Addr -> a -> Heap a -> Heap a
update k v (Heap u m) = Heap u (M.adjust (const v) k m)
-- update k v (Heap u m) = Heap u (M.adjust (undefined) k m)
adjust :: Addr -> (a -> a) -> Heap a -> Heap a
adjust k f (Heap u m) = Heap u (M.adjust f k m)

View File

@@ -1,4 +1,3 @@
{-# LANGUAGE QuantifiedConstraints #-}
module Data.Pretty
( Pretty(..)
, rpretty
@@ -7,11 +6,8 @@ module Data.Pretty
, hsepOf, vsepOf
, vcatOf
, vlinesOf
, vsepTerm
, module Text.PrettyPrint
, maybeParens
, appPrec
, appPrec1
)
where
----------------------------------------------------------------------------------
@@ -19,13 +15,10 @@ import Text.PrettyPrint hiding ((<>))
import Text.PrettyPrint.HughesPJ hiding ((<>))
import Text.Printf
import Data.String (IsString(..))
import Data.Text.Lens hiding ((:<))
import Data.Text.Lens
import Data.Monoid
import Control.Lens
-- instances
import Control.Comonad.Cofree
import Data.Text qualified as T
import Control.Lens
----------------------------------------------------------------------------------
class Pretty a where
@@ -34,7 +27,7 @@ class Pretty a where
{-# MINIMAL pretty | prettyPrec #-}
pretty = prettyPrec 0
prettyPrec = const pretty
prettyPrec a _ = pretty a
rpretty :: (IsString s, Pretty a) => a -> s
rpretty = fromString . render . pretty
@@ -52,9 +45,6 @@ instance (Show a) => Pretty (Showing a) where
deriving via Showing Int instance Pretty Int
class (forall a. Pretty a => Pretty (f a)) => Pretty1 f where
liftPrettyPrec :: (Int -> a -> Doc) -> f a -> Doc
--------------------------------------------------------------------------------
ttext :: Pretty t => t -> Doc
@@ -73,19 +63,3 @@ vlinesOf :: Getting (Endo Doc) s Doc -> s -> Doc
vlinesOf l = foldrOf l (\a b -> a $+$ "" $+$ b) mempty
-- hack(?) to separate chunks with a blankline
vsepTerm :: Doc -> Doc -> Doc -> Doc
vsepTerm term a b = (a <> term) $+$ b
--------------------------------------------------------------------------------
appPrec, appPrec1 :: Int
appPrec = 10
appPrec1 = 11
instance PrintfArg Doc where
formatArg d fmt
| fmtChar (vFmt 'D' fmt) == 'D' = formatString (render d) fmt'
| otherwise = errorBadFormat $ fmtChar fmt
where
fmt' = fmt { fmtChar = 's', fmtPrecision = Nothing }

View File

@@ -9,12 +9,8 @@ module GM
( hdbgProg
, evalProg
, evalProgR
, GmState(..)
, gmCode, gmStack, gmDump, gmHeap, gmEnv, gmStats
, Node(..)
, showState
, gmEvalProg
, Stats(..)
, finalStateOf
, resultOf
, resultOfExpr
@@ -26,13 +22,18 @@ import Data.List (mapAccumL)
import Data.Maybe (fromMaybe, mapMaybe)
import Data.Monoid (Endo(..))
import Data.Tuple (swap)
import Control.Lens
import Data.Text.Lens (IsText, packed, unpacked)
import Lens.Micro
import Lens.Micro.Extras (view)
import Lens.Micro.TH
import Lens.Micro.Platform (packed, unpacked)
import Lens.Micro.Platform.Internal (IsText(..))
import Text.Printf
import Text.PrettyPrint hiding ((<>))
import Text.PrettyPrint.HughesPJ (maybeParens)
import Data.Foldable (traverse_)
import System.IO (Handle, hPutStrLn)
import Control.Concurrent
import System.Exit
import System.IO (Handle, hPutStrLn, stderr)
-- TODO: an actual output system
-- TODO: an actual output system
-- TODO: an actual output system
@@ -90,7 +91,6 @@ data Key = NameKey Name
| ConstrKey Tag Int
deriving (Show, Eq)
-- >> [ref/Instr]
data Instr = Unwind
| PushGlobal Name
| PushConstr Tag Int
@@ -112,7 +112,6 @@ data Instr = Unwind
| Print
| Halt
deriving (Show, Eq)
-- << [ref/Instr]
data Node = NNum Int
| NAp Addr Addr
@@ -155,7 +154,7 @@ evalProg p = res <&> (,sts)
resAddr = final ^. gmStack ^? _head
res = resAddr >>= flip hLookup h
hdbgProg :: Program' -> Handle -> IO GmState
hdbgProg :: Program' -> Handle -> IO (Node, Stats)
hdbgProg p hio = do
(renderOut . showState) `traverse_` states
-- TODO: i'd like the statistics to be at the top of the file, but `sts`
@@ -163,7 +162,7 @@ hdbgProg p hio = do
-- *can't* get partial logs in the case of a crash. this is in opposition to
-- the above traversal which *will* produce partial logs. i love laziness :3
renderOut . showStats $ sts
pure final
pure (res, sts)
where
renderOut r = hPutStrLn hio $ render r ++ "\n"
@@ -176,8 +175,11 @@ hdbgProg p hio = do
[resAddr] = final ^. gmStack
res = hLookupUnsafe resAddr h
evalProgR :: (Monad m) => Program' -> RLPCT m (Node, Stats)
evalProgR :: Program' -> RLPCIO (Node, Stats)
evalProgR p = do
-- me <- liftIO myThreadId
-- liftIO $ forkIO $ threadDelay (5 * 10^6) *> throwTo me ExitSuccess *> exitSuccess
-- states & traverseOf_ (each . gmCode) (liftIO . print)
(renderOut . showState) `traverse_` states
renderOut . showStats $ sts
pure (res, sts)
@@ -196,11 +198,11 @@ eval st = st : rest
where
rest | isFinal st = []
| otherwise = eval next
next = doAdmin (step st)
next = doAdmin (step . (\a -> (unsafePerformIO . hPutStrLn stderr . ('\n':) . render . showState $ a) `seq` a) $ st)
doAdmin :: GmState -> GmState
doAdmin st = st & gmStats . stsReductions %~ succ
& doGC
-- & doGC
where
-- TODO: use heapTrigger option in RLPCOptions
heapTrigger = 50
@@ -410,7 +412,8 @@ step st = case head (st ^. gmCode) of
(e:s) = st ^. gmStack
an = s !! n
h = st ^. gmHeap
h' = h `seq` update an (NInd e) h
-- PROBLEM HERE:
h' = update an (NInd e) h
popI :: Int -> GmState
popI n = st
@@ -645,7 +648,7 @@ compiledPrims =
, binop "<#" Lesser
, binop ">=#" GreaterEq
, ("print#", 1, [ Push 0, Eval, Print, Pack tag_Unit_unit 0, Update 1, Pop 1
, Unwind ])
, Unwind])
]
where
unop k i = (k, 1, [Push 0, Eval, i, Update 1, Pop 1, Unwind])
@@ -659,7 +662,7 @@ buildInitialHeap (view programScDefs -> ss) = mapAccumL allocateSc mempty compil
-- note that we don't count sc allocations in the stats
allocateSc :: GmHeap -> CompiledSC -> (GmHeap, (Key, Addr))
allocateSc h (n,d,c) = (h', (NameKey n, a))
allocateSc h (n,d,c) = traceShow a (h', (NameKey n, a))
where (h',a) = alloc h $ NGlobal d c
-- >> [ref/compileSc]
@@ -746,17 +749,19 @@ buildInitialHeap (view programScDefs -> ss) = mapAccumL allocateSc mempty compil
compileE _ (Lit l) = compileEL l
compileE g (Let NonRec bs e) =
-- we use compileE instead of compileC
mconcat binders <> compileE g' e <> [Slide d]
traceShowId $ mconcat binders <> compileE g' e <> [Slide d]
where
d = length bs
(g',binders) = mapAccumL compileBinder g bs
(g',binders) = mapAccumL compileBinder (argOffset (d-1) g) addressed
-- kinda gross. revisit this
addressed = bs `zip` reverse [0 .. d-1]
compileBinder :: Env -> Binding' -> (Env, Code)
compileBinder m (k := v) = (m',c)
compileBinder :: Env -> (Binding', Int) -> (Env, Code)
compileBinder m (k := v, a) = (m',c)
where
m' = (NameKey k, 0) : argOffset 1 m
m' = (NameKey k, a) : m
-- make note that we use m rather than m'!
c = compileC m v
c = trace (printf "compileC %s %s" (show m) (show v)) $ compileC m v
compileE g (Let Rec bs e) =
Alloc d : initialisers <> body <> [Slide d]
@@ -783,7 +788,6 @@ buildInitialHeap (view programScDefs -> ss) = mapAccumL allocateSc mempty compil
compileE g ("/#" :$ a :$ b) = inlineOp2 g Div a b
compileE g ("==#" :$ a :$ b) = inlineOp2 g Equals a b
compileE g ("<#" :$ a :$ b) = inlineOp2 g Lesser a b
compileE g (">=#" :$ a :$ b) = inlineOp2 g GreaterEq a b
compileE g (Case e as) = compileE g e <> [CaseJump (compileD g as)]

View File

@@ -1,17 +0,0 @@
module Misc where
--------------------------------------------------------------------------------
import Data.Functor.Classes
--------------------------------------------------------------------------------
showsTernaryWith :: (Int -> a -> ShowS)
-> (Int -> b -> ShowS)
-> (Int -> c -> ShowS)
-> String -> Int -> a -> b -> c -> ShowS
showsTernaryWith sp1 sp2 sp3 name d x y z
= showParen (d > 10)
$ showString name . showChar ' '
. sp1 11 x . showChar ' '
. sp2 11 y . showChar ' '
. sp3 11 z

View File

@@ -1,41 +0,0 @@
{-# LANGUAGE TemplateHaskell #-}
module Misc.Lift1
( Lift1(..)
, liftCon, liftCon2, liftCon3
, Lift(..)
)
where
--------------------------------------------------------------------------------
import Language.Haskell.TH hiding (Type, Name)
import Language.Haskell.TH.Syntax hiding (Type, Name)
import Language.Haskell.TH.Syntax qualified as TH
import Language.Haskell.TH.Quote
import Data.Kind qualified
import GHC.Generics
import Data.Fix
--------------------------------------------------------------------------------
class Lift1 (f :: Data.Kind.Type -> Data.Kind.Type) where
lift1 :: (Quote m, Lift t) => f t -> m Exp
liftCon :: Quote m => TH.Name -> m Exp -> m Exp
liftCon n = fmap (AppE (ConE n))
liftCon2 :: Quote m => TH.Name -> m Exp -> m Exp -> m Exp
liftCon2 n a b = do
a' <- a
b' <- b
pure $ ConE n `AppE` a' `AppE` b'
liftCon3 :: Quote m => TH.Name -> m Exp -> m Exp -> m Exp -> m Exp
liftCon3 n a b c = do
a' <- a
b' <- b
c' <- c
pure $ ConE n `AppE` a' `AppE` b' `AppE` c'
instance Lift1 f => Lift (Fix f) where
lift (Fix f) = AppE (ConE 'Fix) <$> lift1 f

View File

@@ -8,7 +8,6 @@ module Rlp.Lex
, Located(..)
, lexToken
, lexStream
, lexStream'
, lexDebug
, lexCont
, popLexState
@@ -28,9 +27,9 @@ import Data.Text (Text)
import Data.Text qualified as T
import Data.Word
import Data.Default
import Control.Lens
import Lens.Micro.Mtl
import Lens.Micro
import Compiler.Types
import Debug.Trace
import Rlp.Parse.Types
}
@@ -276,12 +275,11 @@ lexCont :: (Located RlpToken -> P a) -> P a
lexCont = (lexToken >>=)
lexStream :: P [RlpToken]
lexStream = fmap extract <$> lexStream'
lexStream' :: P [Located RlpToken]
lexStream' = lexToken >>= \case
t@(Located _ TokenEOF) -> pure [t]
t -> (t:) <$> lexStream'
lexStream = do
t <- lexToken
case t of
Located _ TokenEOF -> pure [TokenEOF]
Located _ t -> (t:) <$> lexStream
lexDebug :: (Located RlpToken -> P a) -> P a
lexDebug k = do

View File

@@ -5,17 +5,15 @@ module Rlp.Parse
, parseRlpProgR
, parseRlpExpr
, parseRlpExprR
, runP'
)
where
import Compiler.RlpcError
import Compiler.RLPC
import Control.Comonad.Cofree
import Rlp.Lex
import Rlp.Syntax
import Rlp.Parse.Types
import Rlp.Parse.Associate
import Control.Lens hiding (snoc, (.>), (<.), (<<~), (:<))
import Lens.Micro.Platform
import Data.List.Extra
import Data.Fix
import Data.Functor.Const
@@ -73,11 +71,12 @@ import Compiler.Types
%%
StandaloneProgram :: { Program RlpcPs SrcSpan }
StandaloneProgram : layout0(Decl) {% mkProgram $1 }
StandaloneProgram :: { RlpProgram RlpcPs }
StandaloneProgram : '{' Decls '}' {% mkProgram $2 }
| VL DeclsV VR {% mkProgram $2 }
StandaloneExpr :: { Expr' RlpcPs SrcSpan }
: VL Expr VR { $2 }
StandaloneExpr :: { RlpExpr RlpcPs }
: VL Expr VR { extract $2 }
VL :: { () }
VL : vlbrace { () }
@@ -86,105 +85,125 @@ VR :: { () }
VR : vrbrace { () }
| error { () }
VS :: { () }
VS : ';' { () }
| vsemi { () }
Decls :: { [Decl' RlpcPs] }
Decls : Decl ';' Decls { $1 : $3 }
| Decl ';' { [$1] }
| Decl { [$1] }
Decl :: { Decl RlpcPs SrcSpan }
DeclsV :: { [Decl' RlpcPs] }
DeclsV : Decl VS DeclsV { $1 : $3 }
| Decl VS { [$1] }
| Decl { [$1] }
VS :: { Located RlpToken }
VS : ';' { $1 }
| vsemi { $1 }
Decl :: { Decl' RlpcPs }
: FunDecl { $1 }
| TySigDecl { $1 }
| DataDecl { $1 }
| InfixDecl { $1 }
TySigDecl :: { Decl RlpcPs SrcSpan }
: Var '::' Type { TySigD [$1] $3 }
TySigDecl :: { Decl' RlpcPs }
: Var '::' Type { (\e -> TySigD [extract e]) <<~ $1 <~> $3 }
InfixDecl :: { Decl RlpcPs SrcSpan }
: InfixWord litint InfixOp {% mkInfixD $1 ($2 ^. _litint) $3 }
InfixDecl :: { Decl' RlpcPs }
: InfixWord litint InfixOp { $1 =>> \w ->
InfixD (extract $1) (extractInt $ extract $2)
(extract $3) }
InfixWord :: { Assoc }
: infixl { InfixL }
| infixr { InfixR }
| infix { Infix }
InfixWord :: { Located Assoc }
: infixl { $1 \$> InfixL }
| infixr { $1 \$> InfixR }
| infix { $1 \$> Infix }
DataDecl :: { Decl RlpcPs SrcSpan }
: data Con TyParams '=' DataCons { DataD $2 $3 $5 }
DataDecl :: { Decl' RlpcPs }
: data Con TyParams '=' DataCons { $1 \$> DataD (extract $2) $3 $5 }
TyParams :: { [PsName] }
: {- epsilon -} { [] }
| TyParams varname { $1 `snoc` extractName $2 }
| TyParams varname { $1 `snoc` (extractName . extract $ $2) }
DataCons :: { [ConAlt RlpcPs] }
: DataCons '|' DataCon { $1 `snoc` $3 }
| DataCon { [$1] }
DataCon :: { ConAlt RlpcPs }
: Con Type1s { ConAlt $1 $2 }
: Con Type1s { ConAlt (extract $1) $2 }
Type1s :: { [Ty RlpcPs] }
Type1s :: { [RlpType' RlpcPs] }
: {- epsilon -} { [] }
| Type1s Type1 { $1 `snoc` $2 }
Type1 :: { Ty RlpcPs }
Type1 :: { RlpType' RlpcPs }
: '(' Type ')' { $2 }
| conname { ConT (extractName $1) }
| varname { VarT (extractName $1) }
| conname { fmap ConT (mkPsName $1) }
| varname { fmap VarT (mkPsName $1) }
Type :: { Ty RlpcPs }
: Type '->' Type { FunT $1 $3 }
Type :: { RlpType' RlpcPs }
: Type '->' Type { FunT <<~ $1 <~> $3 }
| TypeApp { $1 }
TypeApp :: { Ty RlpcPs }
TypeApp :: { RlpType' RlpcPs }
: Type1 { $1 }
| TypeApp Type1 { AppT $1 $2 }
| TypeApp Type1 { AppT <<~ $1 <~> $2 }
FunDecl :: { Decl RlpcPs SrcSpan }
FunDecl : Var Params '=' Expr { FunD $1 $2 $4 Nothing }
FunDecl :: { Decl' RlpcPs }
FunDecl : Var Params '=' Expr { $4 =>> \e ->
FunD (extract $1) $2 e Nothing }
Params :: { [Pat RlpcPs] }
Params :: { [Pat' RlpcPs] }
Params : {- epsilon -} { [] }
| Params Pat1 { $1 `snoc` $2 }
Pat :: { Pat RlpcPs }
: Con Pat1s { ConP $1 $2 }
Pat :: { Pat' RlpcPs }
: Con Pat1s { $1 =>> \cn ->
ConP (extract $1) $2 }
| Pat1 { $1 }
Pat1s :: { [Pat RlpcPs] }
Pat1s :: { [Pat' RlpcPs] }
: Pat1s Pat1 { $1 `snoc` $2 }
| Pat1 { [$1] }
Pat1 :: { Pat RlpcPs }
: Con { ConP $1 [] }
| Var { VarP $1 }
| Lit { LitP $1 }
| '(' Pat ')' { $2 }
Pat1 :: { Pat' RlpcPs }
: Con { fmap (`ConP` []) $1 }
| Var { fmap VarP $1 }
| Lit { LitP <<= $1 }
| '(' Pat ')' { $1 .> $2 <. $3 }
Expr :: { Expr' RlpcPs SrcSpan }
Expr :: { RlpExpr' RlpcPs }
-- infixities delayed till next release :(
-- : Expr1 InfixOp Expr { undefined }
: AppExpr { $1 }
| TempInfixExpr { $1 }
-- : Expr1 InfixOp Expr { $2 =>> \o ->
-- OAppE (extract o) $1 $3 }
: TempInfixExpr { $1 }
| LetExpr { $1 }
| CaseExpr { $1 }
| AppExpr { $1 }
TempInfixExpr :: { Expr' RlpcPs SrcSpan }
TempInfixExpr :: { RlpExpr' RlpcPs }
TempInfixExpr : Expr1 InfixOp TempInfixExpr {% tempInfixExprErr $1 $3 }
| Expr1 InfixOp Expr1 { nolo' $ InfixEF $2 $1 $3 }
| Expr1 InfixOp Expr1 { $2 =>> \o ->
OAppE (extract o) $1 $3 }
AppExpr :: { Expr' RlpcPs SrcSpan }
AppExpr :: { RlpExpr' RlpcPs }
: Expr1 { $1 }
| AppExpr Expr1 { comb2 AppEF $1 $2 }
| AppExpr Expr1 { AppE <<~ $1 <~> $2 }
LetExpr :: { Expr' RlpcPs SrcSpan }
: let layout1(Binding) in Expr { nolo' $ LetEF NonRec $2 $4 }
| letrec layout1(Binding) in Expr { nolo' $ LetEF Rec $2 $4 }
LetExpr :: { RlpExpr' RlpcPs }
: let layout1(Binding) in Expr { $1 \$> LetE $2 $4 }
| letrec layout1(Binding) in Expr { $1 \$> LetrecE $2 $4 }
CaseExpr :: { Expr' RlpcPs SrcSpan }
: case Expr of layout0(Alt) { nolo' $ CaseEF $2 $4 }
CaseExpr :: { RlpExpr' RlpcPs }
: case Expr of layout0(CaseAlt)
{ CaseE <<~ $2 <#> $4 }
-- TODO: where-binds
Alt :: { Alt' RlpcPs SrcSpan }
: Pat '->' Expr { AltA $1 (view _unwrap $3) Nothing }
CaseAlt :: { (Alt RlpcPs, Where RlpcPs) }
: Alt { ($1, []) }
Alt :: { Alt RlpcPs }
: Pat '->' Expr { AltA $1 $3 }
-- layout0(p : β) :: [β]
layout0(p) : '{' layout_list0(';',p) '}' { $2 }
@@ -203,68 +222,38 @@ layout1(p) : '{' layout_list1(';',p) '}' { $2 }
layout_list1(sep,p) : p { [$1] }
| layout_list1(sep,p) sep p { $1 `snoc` $3 }
Binding :: { Binding' RlpcPs SrcSpan }
: Pat '=' Expr { PatB $1 (view _unwrap $3) }
Binding :: { Binding' RlpcPs }
: Pat '=' Expr { PatB <<~ $1 <~> $3 }
Expr1 :: { Expr' RlpcPs SrcSpan }
: '(' Expr ')' { $2 }
| Lit { nolo' $ LitEF $1 }
| Var { case $1 of Located ss _ -> ss :< VarEF $1 }
| Con { case $1 of Located ss _ -> ss :< VarEF $1 }
Expr1 :: { RlpExpr' RlpcPs }
: '(' Expr ')' { $1 .> $2 <. $3 }
| Lit { fmap LitE $1 }
| Var { fmap VarE $1 }
| Con { fmap VarE $1 }
InfixOp :: { PsName }
: consym { extractName $1 }
| varsym { extractName $1 }
InfixOp :: { Located PsName }
: consym { mkPsName $1 }
| varsym { mkPsName $1 }
-- TODO: microlens-pro save me microlens-pro (rewrite this with prisms)
Lit :: { Lit RlpcPs }
: litint { $1 ^. to extract
. singular _TokenLitInt
. to IntL }
Lit :: { Lit' RlpcPs }
: litint { $1 <&> (IntL . (\ (TokenLitInt n) -> n)) }
Var :: { PsName }
Var : varname { $1 <&> view (singular _TokenVarName) }
| varsym { $1 <&> view (singular _TokenVarSym) }
Var :: { Located PsName }
Var : varname { mkPsName $1 }
| varsym { mkPsName $1 }
Con :: { PsName }
: conname { $1 <&> view (singular _TokenConName) }
Con :: { Located PsName }
: conname { mkPsName $1 }
{
parseRlpProgR :: (Monad m) => Text -> RLPCT m (Program RlpcPs SrcSpan)
parseRlpProgR s = do
a <- liftErrorful $ pToErrorful parseRlpProg st
addDebugMsg @_ @String "dump-parsed" $ show a
pure a
where
st = programInitState s
parseRlpExprR :: (Monad m) => Text -> RLPCT m (Expr' RlpcPs SrcSpan)
parseRlpExprR :: (Monad m) => Text -> RLPCT m (RlpExpr RlpcPs)
parseRlpExprR s = liftErrorful $ pToErrorful parseRlpExpr st
where
st = programInitState s
mkInfixD :: Assoc -> Int -> PsName -> P (Decl RlpcPs SrcSpan)
mkInfixD a p ln@(Located ss n) = do
let opl :: Lens' ParseState (Maybe OpInfo)
opl = psOpTable . at n
opl <~ (use opl >>= \case
Just o -> addWoundHere l e >> pure (Just o) where
e = RlpParErrDuplicateInfixD n
l = T.length n
Nothing -> pure (Just (a,p))
)
pos <- use (psInput . aiPos)
pure $ InfixD a p ln
{--
parseRlpExprR :: (Monad m) => Text -> RLPCT m (Expr RlpcPs)
parseRlpExprR s = liftErrorful $ pToErrorful parseRlpExpr st
where
st = programInitState s
parseRlpProgR :: (Monad m) => Text -> RLPCT m (Program RlpcPs)
parseRlpProgR :: (Monad m) => Text -> RLPCT m (RlpProgram RlpcPs)
parseRlpProgR s = do
a <- liftErrorful $ pToErrorful parseRlpProg st
addDebugMsg @_ @String "dump-parsed" $ show a
@@ -287,48 +276,37 @@ extractInt :: RlpToken -> Int
extractInt (TokenLitInt n) = n
extractInt _ = error "extractInt: ugh"
mkProgram :: [Decl RlpcPs SrcSpan] -> P (Program RlpcPs SrcSpan)
mkProgram :: [Decl' RlpcPs] -> P (RlpProgram RlpcPs)
mkProgram ds = do
pt <- use psOpTable
pure $ Program (associate pt <$> ds)
pure $ RlpProgram (associate pt <$> ds)
parseError :: (Located RlpToken, [String]) -> P a
parseError ((Located ss t), exp) = addFatal $
errorMsg ss (RlpParErrUnexpectedToken t exp)
mkInfixD :: Assoc -> Int -> PsName -> P (Decl' RlpcPs)
mkInfixD a p n = do
let opl :: Lens' ParseState (Maybe OpInfo)
opl = psOpTable . at n
opl <~ (use opl >>= \case
Just o -> addWoundHere l e >> pure (Just o) where
e = RlpParErrDuplicateInfixD n
l = T.length n
Nothing -> pure (Just (a,p))
)
pos <- use (psInput . aiPos)
pure $ Located (spanFromPos pos 0) (InfixD a p n)
intOfToken :: Located RlpToken -> Int
intOfToken (Located _ (TokenLitInt n)) = n
tempInfixExprErr :: Expr RlpcPs -> Expr RlpcPs -> P a
tempInfixExprErr :: RlpExpr' RlpcPs -> RlpExpr' RlpcPs -> P a
tempInfixExprErr (Located a _) (Located b _) =
addFatal $ errorMsg (a <> b) $ RlpParErrOther
[ "The rl' frontend is currently in beta. Support for infix expressions is minimal, sorry! :("
, "In the mean time, don't mix any infix operators."
]
--}
_litint :: Getter (Located RlpToken) Int
_litint = to extract
. singular _TokenLitInt
tempInfixExprErr :: Expr' RlpcPs SrcSpan -> Expr' RlpcPs SrcSpan -> P a
tempInfixExprErr (a :< _) (b :< _) =
addFatal $ errorMsg (a <> b) $ RlpParErrOther
[ "The rl' frontend is currently in beta. Support for infix expressions is minimal, sorry! :("
, "In the mean time, don't mix any infix operators."
]
mkProgram :: [Decl RlpcPs SrcSpan] -> P (Program RlpcPs SrcSpan)
mkProgram ds = do
pt <- use psOpTable
pure $ Program (associate pt <$> ds)
extractName :: Located RlpToken -> PsName
extractName (Located ss (TokenVarSym n)) = Located ss n
extractName (Located ss (TokenVarName n)) = Located ss n
extractName (Located ss (TokenConName n)) = Located ss n
extractName (Located ss (TokenConSym n)) = Located ss n
parseError :: (Located RlpToken, [String]) -> P a
parseError ((Located ss t), exp) = addFatal $
errorMsg ss (RlpParErrUnexpectedToken t exp)
}

View File

@@ -11,12 +11,12 @@ import Data.Functor.Const
import Data.Functor
import Data.Text qualified as T
import Text.Printf
import Control.Lens
import Lens.Micro
import Rlp.Parse.Types
import Rlp.Syntax
--------------------------------------------------------------------------------
associate :: OpTable -> Decl RlpcPs a -> Decl RlpcPs a
associate :: OpTable -> Decl' RlpcPs -> Decl' RlpcPs
associate _ p = p
{-# WARNING associate "unimplemented" #-}

View File

@@ -1,7 +1,6 @@
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE ImplicitParams, ViewPatterns, PatternSynonyms #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE UndecidableInstances #-}
module Rlp.Parse.Types
(
-- * Trees That Grow
@@ -18,9 +17,10 @@ module Rlp.Parse.Types
, RlpToken(..), AlexInput(..), Position(..), spanFromPos, LexerAction
, Located(..), PsName
-- ** Lenses
, _TokenLitInt, _TokenVarName, _TokenConName, _TokenVarSym
, aiPrevChar, aiSource, aiBytes, aiPos, posLine, posColumn
, (<<~), (<~>)
-- * Error handling
, MsgEnvelope(..), RlpcError(..), RlpParseError(..)
, addFatal, addWound, addFatalHere, addWoundHere
@@ -28,7 +28,6 @@ module Rlp.Parse.Types
where
--------------------------------------------------------------------------------
import Core.Syntax (Name)
import Text.Show.Deriving
import Control.Monad
import Control.Monad.State.Strict
import Control.Monad.Errorful
@@ -45,7 +44,8 @@ import Data.HashMap.Strict qualified as H
import Data.Void
import Data.Word (Word8)
import Data.Text qualified as T
import Control.Lens hiding ((<<~))
import Lens.Micro.TH
import Lens.Micro
import Rlp.Syntax
import Compiler.Types
--------------------------------------------------------------------------------
@@ -54,9 +54,34 @@ import Compiler.Types
data RlpcPs
type instance NameP RlpcPs = PsName
type instance XRec RlpcPs a = Located a
type instance IdP RlpcPs = PsName
type PsName = Located Text
type instance XFunD RlpcPs = ()
type instance XDataD RlpcPs = ()
type instance XInfixD RlpcPs = ()
type instance XTySigD RlpcPs = ()
type instance XXDeclD RlpcPs = ()
type instance XLetE RlpcPs = ()
type instance XLetrecE RlpcPs = ()
type instance XVarE RlpcPs = ()
type instance XLamE RlpcPs = ()
type instance XCaseE RlpcPs = ()
type instance XIfE RlpcPs = ()
type instance XAppE RlpcPs = ()
type instance XLitE RlpcPs = ()
type instance XParE RlpcPs = ()
type instance XOAppE RlpcPs = ()
type instance XXRlpExprE RlpcPs = ()
type PsName = Text
instance MapXRec RlpcPs where
mapXRec = fmap
instance UnXRec RlpcPs where
unXRec = extract
--------------------------------------------------------------------------------
@@ -94,10 +119,10 @@ data RlpToken
-- literals
= TokenLitInt Int
-- identifiers
| TokenVarName Text
| TokenConName Text
| TokenVarSym Text
| TokenConSym Text
| TokenVarName Name
| TokenConName Name
| TokenVarSym Name
| TokenConSym Name
-- reserved words
| TokenData
| TokenCase
@@ -128,31 +153,6 @@ data RlpToken
| TokenEOF
deriving (Show)
_TokenLitInt :: Prism' RlpToken Int
_TokenLitInt = prism TokenLitInt $ \case
TokenLitInt n -> Right n
x -> Left x
_TokenVarName :: Prism' RlpToken Text
_TokenVarName = prism TokenVarName $ \case
TokenVarName n -> Right n
x -> Left x
_TokenVarSym :: Prism' RlpToken Text
_TokenVarSym = prism TokenVarSym $ \case
TokenVarSym n -> Right n
x -> Left x
_TokenConName :: Prism' RlpToken Text
_TokenConName = prism TokenConName $ \case
TokenConName n -> Right n
x -> Left x
_TokenConSym :: Prism' RlpToken Text
_TokenConSym = prism TokenConSym $ \case
TokenConSym n -> Right n
x -> Left x
newtype P a = P {
runP :: ParseState
-> (ParseState, [MsgEnvelope RlpParseError], Maybe a)
@@ -282,14 +282,13 @@ initAlexInput s = AlexInput
--------------------------------------------------------------------------------
-- deriving instance Lift (Program RlpcPs)
-- deriving instance Lift (Decl RlpcPs)
-- deriving instance Lift (Pat RlpcPs)
-- deriving instance Lift (Lit RlpcPs)
-- deriving instance Lift (Expr RlpcPs)
-- deriving instance Lift (Binding RlpcPs)
-- deriving instance Lift (Ty RlpcPs)
-- deriving instance Lift (Alt RlpcPs)
-- deriving instance Lift (ConAlt RlpcPs)
deriving instance Lift (RlpProgram RlpcPs)
deriving instance Lift (Decl RlpcPs)
deriving instance Lift (Pat RlpcPs)
deriving instance Lift (Lit RlpcPs)
deriving instance Lift (RlpExpr RlpcPs)
deriving instance Lift (Binding RlpcPs)
deriving instance Lift (RlpType RlpcPs)
deriving instance Lift (Alt RlpcPs)
deriving instance Lift (ConAlt RlpcPs)

View File

@@ -1,10 +1,363 @@
-- recursion-schemes
{-# LANGUAGE DeriveFunctor, DeriveFoldable, DeriveTraversable
, TemplateHaskell, TypeFamilies #-}
{-# LANGUAGE OverloadedStrings, PatternSynonyms, ViewPatterns #-}
{-# LANGUAGE TypeFamilies, TypeFamilyDependencies #-}
{-# LANGUAGE UndecidableInstances, ImpredicativeTypes #-}
module Rlp.Syntax
( module Rlp.Syntax.Backstage
, module Rlp.Syntax.Types
(
-- * AST
RlpProgram(..)
, progDecls
, Decl(..), Decl', RlpExpr(..), RlpExpr', RlpExprF(..)
, Pat(..), Pat'
, Alt(..), Where
, Assoc(..)
, Lit(..), Lit'
, RlpType(..), RlpType'
, ConAlt(..)
, Binding(..), Binding'
, _PatB, _FunB
, _VarP, _LitP, _ConP
-- * Trees That Grow boilerplate
-- ** Extension points
, IdP, IdP', XRec, UnXRec(..), MapXRec(..)
-- *** Decl
, XFunD, XTySigD, XInfixD, XDataD, XXDeclD
-- *** RlpExpr
, XLetE, XLetrecE, XVarE, XLamE, XCaseE, XIfE, XAppE, XLitE
, XParE, XOAppE, XXRlpExprE
-- ** Pattern synonyms
-- *** Decl
, pattern FunD, pattern TySigD, pattern InfixD, pattern DataD
, pattern FunD'', pattern TySigD'', pattern InfixD'', pattern DataD''
-- *** RlpExpr
, pattern LetE, pattern LetrecE, pattern VarE, pattern LamE, pattern CaseE
, pattern IfE , pattern AppE, pattern LitE, pattern ParE, pattern OAppE
, pattern XRlpExprE
-- *** RlpType
, pattern FunConT'', pattern FunT'', pattern AppT'', pattern VarT''
, pattern ConT''
-- *** Pat
, pattern VarP'', pattern LitP'', pattern ConP''
-- *** Binding
, pattern PatB''
)
where
--------------------------------------------------------------------------------
import Rlp.Syntax.Backstage
import Rlp.Syntax.Types
----------------------------------------------------------------------------------
import Data.Text (Text)
import Data.Text qualified as T
import Data.String (IsString(..))
import Data.Functor.Foldable
import Data.Functor.Foldable.TH (makeBaseFunctor)
import Data.Functor.Classes
import Data.Functor.Identity
import Data.Kind (Type)
import GHC.Generics
import Language.Haskell.TH.Syntax (Lift)
import Lens.Micro.Pro
import Lens.Micro.Pro.TH
import Core.Syntax hiding (Lit, Type, Binding, Binding')
import Core (HasRHS(..), HasLHS(..))
----------------------------------------------------------------------------------
data RlpModule p = RlpModule
{ _rlpmodName :: Text
, _rlpmodProgram :: RlpProgram p
}
-- | dear god.
type PhaseShow p =
( Show (XRec p (Pat p)), Show (XRec p (RlpExpr p))
, Show (XRec p (Lit p)), Show (IdP p)
, Show (XRec p (RlpType p))
, Show (XRec p (Binding p))
)
newtype RlpProgram p = RlpProgram [Decl' p]
progDecls :: Lens' (RlpProgram p) [Decl' p]
progDecls = lens
(\ (RlpProgram ds) -> ds)
(const RlpProgram)
deriving instance (PhaseShow p, Show (XRec p (Decl p))) => Show (RlpProgram p)
data RlpType p = FunConT
| FunT (RlpType' p) (RlpType' p)
| AppT (RlpType' p) (RlpType' p)
| VarT (IdP p)
| ConT (IdP p)
type RlpType' p = XRec p (RlpType p)
pattern FunConT'' :: (UnXRec p) => RlpType' p
pattern FunT'' :: (UnXRec p) => RlpType' p -> RlpType' p -> RlpType' p
pattern AppT'' :: (UnXRec p) => RlpType' p -> RlpType' p -> RlpType' p
pattern VarT'' :: (UnXRec p) => IdP p -> RlpType' p
pattern ConT'' :: (UnXRec p) => IdP p -> RlpType' p
pattern FunConT'' <- (unXRec -> FunConT)
pattern FunT'' s t <- (unXRec -> FunT s t)
pattern AppT'' s t <- (unXRec -> AppT s t)
pattern VarT'' n <- (unXRec -> VarT n)
pattern ConT'' n <- (unXRec -> ConT n)
deriving instance (PhaseShow p)
=> Show (RlpType p)
data Decl p = FunD' (XFunD p) (IdP p) [Pat' p] (RlpExpr' p) (Maybe (Where p))
| TySigD' (XTySigD p) [IdP p] (RlpType' p)
| DataD' (XDataD p) (IdP p) [IdP p] [ConAlt p]
| InfixD' (XInfixD p) Assoc Int (IdP p)
| XDeclD' !(XXDeclD p)
deriving instance
( Show (XFunD p), Show (XTySigD p)
, Show (XDataD p), Show (XInfixD p)
, Show (XXDeclD p)
, PhaseShow p
)
=> Show (Decl p)
type family XFunD p
type family XTySigD p
type family XDataD p
type family XInfixD p
type family XXDeclD p
pattern FunD :: (XFunD p ~ ())
=> IdP p -> [Pat' p] -> RlpExpr' p -> Maybe (Where p)
-> Decl p
pattern TySigD :: (XTySigD p ~ ()) => [IdP p] -> RlpType' p -> Decl p
pattern DataD :: (XDataD p ~ ()) => IdP p -> [IdP p] -> [ConAlt p] -> Decl p
pattern InfixD :: (XInfixD p ~ ()) => Assoc -> Int -> IdP p -> Decl p
pattern XDeclD :: (XXDeclD p ~ ()) => Decl p
pattern FunD n as e wh = FunD' () n as e wh
pattern TySigD ns t = TySigD' () ns t
pattern DataD n as cs = DataD' () n as cs
pattern InfixD a p n = InfixD' () a p n
pattern XDeclD = XDeclD' ()
pattern FunD'' :: (UnXRec p)
=> IdP p -> [Pat' p] -> RlpExpr' p -> Maybe (Where p)
-> Decl' p
pattern TySigD'' :: (UnXRec p)
=> [IdP p] -> RlpType' p -> Decl' p
pattern DataD'' :: (UnXRec p)
=> IdP p -> [IdP p] -> [ConAlt p] -> Decl' p
pattern InfixD'' :: (UnXRec p)
=> Assoc -> Int -> IdP p -> Decl' p
pattern FunD'' n as e wh <- (unXRec -> FunD' _ n as e wh)
pattern TySigD'' ns t <- (unXRec -> TySigD' _ ns t)
pattern DataD'' n as ds <- (unXRec -> DataD' _ n as ds)
pattern InfixD'' a p n <- (unXRec -> InfixD' _ a p n)
type Decl' p = XRec p (Decl p)
data Assoc = InfixL
| InfixR
| Infix
deriving (Show, Lift)
data ConAlt p = ConAlt (IdP p) [RlpType' p]
deriving instance (Show (IdP p), Show (XRec p (RlpType p))) => Show (ConAlt p)
data RlpExpr p = LetE' (XLetE p) [Binding' p] (RlpExpr' p)
| LetrecE' (XLetrecE p) [Binding' p] (RlpExpr' p)
| VarE' (XVarE p) (IdP p)
| LamE' (XLamE p) [Pat p] (RlpExpr' p)
| CaseE' (XCaseE p) (RlpExpr' p) [(Alt p, Where p)]
| IfE' (XIfE p) (RlpExpr' p) (RlpExpr' p) (RlpExpr' p)
| AppE' (XAppE p) (RlpExpr' p) (RlpExpr' p)
| LitE' (XLitE p) (Lit p)
| ParE' (XParE p) (RlpExpr' p)
| OAppE' (XOAppE p) (IdP p) (RlpExpr' p) (RlpExpr' p)
| XRlpExprE' !(XXRlpExprE p)
deriving (Generic)
type family XLetE p
type family XLetrecE p
type family XVarE p
type family XLamE p
type family XCaseE p
type family XIfE p
type family XAppE p
type family XLitE p
type family XParE p
type family XOAppE p
type family XXRlpExprE p
pattern LetE :: (XLetE p ~ ()) => [Binding' p] -> RlpExpr' p -> RlpExpr p
pattern LetrecE :: (XLetrecE p ~ ()) => [Binding' p] -> RlpExpr' p -> RlpExpr p
pattern VarE :: (XVarE p ~ ()) => IdP p -> RlpExpr p
pattern LamE :: (XLamE p ~ ()) => [Pat p] -> RlpExpr' p -> RlpExpr p
pattern CaseE :: (XCaseE p ~ ()) => RlpExpr' p -> [(Alt p, Where p)] -> RlpExpr p
pattern IfE :: (XIfE p ~ ()) => RlpExpr' p -> RlpExpr' p -> RlpExpr' p -> RlpExpr p
pattern AppE :: (XAppE p ~ ()) => RlpExpr' p -> RlpExpr' p -> RlpExpr p
pattern LitE :: (XLitE p ~ ()) => Lit p -> RlpExpr p
pattern ParE :: (XParE p ~ ()) => RlpExpr' p -> RlpExpr p
pattern OAppE :: (XOAppE p ~ ()) => IdP p -> RlpExpr' p -> RlpExpr' p -> RlpExpr p
pattern XRlpExprE :: (XXRlpExprE p ~ ()) => RlpExpr p
pattern LetE bs e = LetE' () bs e
pattern LetrecE bs e = LetrecE' () bs e
pattern VarE n = VarE' () n
pattern LamE as e = LamE' () as e
pattern CaseE e as = CaseE' () e as
pattern IfE c a b = IfE' () c a b
pattern AppE f x = AppE' () f x
pattern LitE l = LitE' () l
pattern ParE e = ParE' () e
pattern OAppE n a b = OAppE' () n a b
pattern XRlpExprE = XRlpExprE' ()
deriving instance
( Show (XLetE p), Show (XLetrecE p), Show (XVarE p)
, Show (XLamE p), Show (XCaseE p), Show (XIfE p)
, Show (XAppE p), Show (XLitE p), Show (XParE p)
, Show (XOAppE p), Show (XXRlpExprE p)
, PhaseShow p
) => Show (RlpExpr p)
type RlpExpr' p = XRec p (RlpExpr p)
class UnXRec p where
unXRec :: XRec p a -> a
class WrapXRec p where
wrapXRec :: a -> XRec p a
class MapXRec p where
mapXRec :: (a -> b) -> XRec p a -> XRec p b
-- old definition:
-- type family XRec p (f :: Type -> Type) = (r :: Type) | r -> p f
type family XRec p a = (r :: Type) | r -> p a
type family IdP p
type IdP' p = XRec p (IdP p)
type Where p = [Binding p]
-- do we want guards?
data Alt p = AltA (Pat' p) (RlpExpr' p)
deriving instance (PhaseShow p) => Show (Alt p)
data Binding p = PatB (Pat' p) (RlpExpr' p)
| FunB (IdP p) [Pat' p] (RlpExpr' p)
type Binding' p = XRec p (Binding p)
pattern PatB'' :: (UnXRec p) => Pat' p -> RlpExpr' p -> Binding' p
pattern PatB'' p e <- (unXRec -> PatB p e)
deriving instance (Show (XRec p (Pat p)), Show (XRec p (RlpExpr p)), Show (IdP p)
) => Show (Binding p)
data Pat p = VarP (IdP p)
| LitP (Lit' p)
| ConP (IdP p) [Pat' p]
pattern VarP'' :: (UnXRec p) => IdP p -> Pat' p
pattern LitP'' :: (UnXRec p) => Lit' p -> Pat' p
pattern ConP'' :: (UnXRec p) => IdP p -> [Pat' p] -> Pat' p
pattern VarP'' n <- (unXRec -> VarP n)
pattern LitP'' l <- (unXRec -> LitP l)
pattern ConP'' c as <- (unXRec -> ConP c as)
deriving instance (PhaseShow p) => Show (Pat p)
type Pat' p = XRec p (Pat p)
data Lit p = IntL Int
| CharL Char
| ListL [RlpExpr' p]
deriving instance (PhaseShow p) => Show (Lit p)
type Lit' p = XRec p (Lit p)
-- instance HasLHS Alt Alt Pat Pat where
-- _lhs = lens
-- (\ (AltA p _) -> p)
-- (\ (AltA _ e) p' -> AltA p' e)
-- instance HasRHS Alt Alt RlpExpr RlpExpr where
-- _rhs = lens
-- (\ (AltA _ e) -> e)
-- (\ (AltA p _) e' -> AltA p e')
-- makeBaseFunctor ''RlpExpr
-- showsTernaryWith :: (Int -> x -> ShowS)
-- -> (Int -> y -> ShowS)
-- -> (Int -> z -> ShowS)
-- -> String -> Int
-- -> x -> y -> z
-- -> ShowS
-- showsTernaryWith sa sb sc name p a b c = showParen (p > 10)
-- $ showString name
-- . showChar ' ' . sa 11 a
-- . showChar ' ' . sb 11 b
-- . showChar ' ' . sc 11 c
--------------------------------------------------------------------------------
makeLenses ''RlpModule
makePrisms ''Pat
makePrisms ''Binding
--------------------------------------------------------------------------------
data RlpExprF p a = LetE'F (XLetE p) [Binding' p] a
| LetrecE'F (XLetrecE p) [Binding' p] a
| VarE'F (XVarE p) (IdP p)
| LamE'F (XLamE p) [Pat p] a
| CaseE'F (XCaseE p) a [(Alt p, Where p)]
| IfE'F (XIfE p) a a a
| AppE'F (XAppE p) a a
| LitE'F (XLitE p) (Lit p)
| ParE'F (XParE p) a
| OAppE'F (XOAppE p) (IdP p) a a
| XRlpExprE'F !(XXRlpExprE p)
deriving (Functor, Foldable, Traversable, Generic)
type instance Base (RlpExpr p) = RlpExprF p
instance (UnXRec p) => Recursive (RlpExpr p) where
project = \case
LetE' xx bs e -> LetE'F xx bs (unXRec e)
LetrecE' xx bs e -> LetrecE'F xx bs (unXRec e)
VarE' xx n -> VarE'F xx n
LamE' xx ps e -> LamE'F xx ps (unXRec e)
CaseE' xx e as -> CaseE'F xx (unXRec e) as
IfE' xx a b c -> IfE'F xx (unXRec a) (unXRec b) (unXRec c)
AppE' xx f x -> AppE'F xx (unXRec f) (unXRec x)
LitE' xx l -> LitE'F xx l
ParE' xx e -> ParE'F xx (unXRec e)
OAppE' xx f a b -> OAppE'F xx f (unXRec a) (unXRec b)
XRlpExprE' xx -> XRlpExprE'F xx
instance (WrapXRec p) => Corecursive (RlpExpr p) where
embed = \case
LetE'F xx bs e -> LetE' xx bs (wrapXRec e)
LetrecE'F xx bs e -> LetrecE' xx bs (wrapXRec e)
VarE'F xx n -> VarE' xx n
LamE'F xx ps e -> LamE' xx ps (wrapXRec e)
CaseE'F xx e as -> CaseE' xx (wrapXRec e) as
IfE'F xx a b c -> IfE' xx (wrapXRec a) (wrapXRec b) (wrapXRec c)
AppE'F xx f x -> AppE' xx (wrapXRec f) (wrapXRec x)
LitE'F xx l -> LitE' xx l
ParE'F xx e -> ParE' xx (wrapXRec e)
OAppE'F xx f a b -> OAppE' xx f (wrapXRec a) (wrapXRec b)
XRlpExprE'F xx -> XRlpExprE' xx

View File

@@ -1,35 +0,0 @@
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE UndecidableInstances #-}
module Rlp.Syntax.Backstage
( strip
)
where
--------------------------------------------------------------------------------
import Data.Fix hiding (cata)
import Data.Functor.Classes
import Data.Functor.Foldable
import Rlp.Syntax.Types
import Text.Show.Deriving
import Language.Haskell.TH.Syntax (Lift)
--------------------------------------------------------------------------------
-- oprhan instances because TH
instance (Show (NameP p)) => Show1 (Alt p) where
liftShowsPrec = $(makeLiftShowsPrec ''Alt)
instance (Show (NameP p)) => Show1 (Binding p) where
liftShowsPrec = $(makeLiftShowsPrec ''Binding)
instance (Show (NameP p)) => Show1 (ExprF p) where
liftShowsPrec = $(makeLiftShowsPrec ''ExprF)
deriving instance (Lift (NameP p), Lift a) => Lift (Expr' p a)
deriving instance (Lift (NameP p), Lift a) => Lift (Decl p a)
deriving instance (Show (NameP p), Show a) => Show (Decl p a)
deriving instance (Show (NameP p), Show a) => Show (Program p a)
strip :: Functor f => Cofree f a -> Fix f
strip (_ :< as) = Fix $ strip <$> as

View File

@@ -1,143 +0,0 @@
-- recursion-schemes
{-# LANGUAGE DeriveTraversable, TemplateHaskell, TypeFamilies #-}
{-# LANGUAGE OverloadedStrings, PatternSynonyms, ViewPatterns #-}
{-# LANGUAGE UndecidableInstances, ImpredicativeTypes #-}
module Rlp.Syntax.Types
(
NameP
, SimpleP
, Assoc(..)
, ConAlt(..)
, Alt(..), Alt'
, Ty(..)
, Binding(..), Binding'
, Expr', ExprF(..)
, Rec(..)
, Lit(..)
, Pat(..)
, Decl(..)
, Program(..)
, Where
-- * Re-exports
, Cofree(..)
, Trans.Cofree.CofreeF
, SrcSpan(..)
)
where
----------------------------------------------------------------------------------
import Data.Text (Text)
import Data.Text qualified as T
import Data.String (IsString(..))
import Data.Functor.Classes
import Data.Functor.Identity
import Data.Functor.Compose
import Data.Fix
import Data.Kind (Type)
import GHC.Generics
import Language.Haskell.TH.Syntax (Lift)
import Control.Lens hiding ((:<))
import Control.Comonad.Trans.Cofree qualified as Trans.Cofree
import Control.Comonad.Cofree
import Data.Functor.Foldable
import Data.Functor.Foldable.TH (makeBaseFunctor)
import Compiler.Types (SrcSpan(..), Located(..))
import Core.Syntax qualified as Core
import Core (Rec(..), HasRHS(..), HasLHS(..))
----------------------------------------------------------------------------------
data SimpleP
type instance NameP SimpleP = String
type family NameP p
data ExprF p a = LetEF Rec [Binding p a] a
| VarEF (NameP p)
| LamEF [Pat p] a
| CaseEF a [Alt p a]
| IfEF a a a
| AppEF a a
| LitEF (Lit p)
| ParEF a
| InfixEF (NameP p) a a
deriving (Functor, Foldable, Traversable)
data ConAlt p = ConAlt (NameP p) [Ty p]
deriving instance (Lift (NameP p)) => Lift (ConAlt p)
deriving instance (Show (NameP p)) => Show (ConAlt p)
data Ty p = ConT (NameP p)
| VarT (NameP p)
| FunT (Ty p) (Ty p)
| AppT (Ty p) (Ty p)
deriving instance (Show (NameP p)) => Show (Ty p)
deriving instance (Lift (NameP p)) => Lift (Ty p)
data Pat p = VarP (NameP p)
| LitP (Lit p)
| ConP (NameP p) [Pat p]
deriving instance (Lift (NameP p)) => Lift (Pat p)
deriving instance (Show (NameP p)) => Show (Pat p)
data Lit p = IntL Int
deriving Show
deriving instance (Lift (NameP p)) => Lift (Lit p)
data Assoc = InfixL | InfixR | Infix
deriving (Lift, Show)
deriving instance (Show (NameP p), Show a) => Show (ExprF p a)
deriving instance (Lift (NameP p), Lift a) => Lift (ExprF p a)
data Binding p a = PatB (Pat p) (ExprF p a)
deriving (Functor, Foldable, Traversable)
deriving instance (Lift (NameP p), Lift a) => Lift (Binding p a)
deriving instance (Show (NameP p), Show a) => Show (Binding p a)
type Binding' p a = Binding p (Cofree (ExprF p) a)
type Where p a = [Binding p a]
data Alt p a = AltA (Pat p) (ExprF p a) (Maybe (Where p a))
deriving (Functor, Foldable, Traversable)
deriving instance (Show (NameP p), Show a) => Show (Alt p a)
deriving instance (Lift (NameP p), Lift a) => Lift (Alt p a)
type Expr p = Fix (ExprF p)
type Alt' p a = Alt p (Cofree (ExprF p) a)
--------------------------------------------------------------------------------
data Program p a = Program
{ _programDecls :: [Decl p a]
}
data Decl p a = FunD (NameP p) [Pat p] (Expr' p a) (Maybe (Where p a))
| TySigD [NameP p] (Ty p)
| DataD (NameP p) [NameP p] [ConAlt p]
| InfixD Assoc Int (NameP p)
type Decl' p a = Decl p (Cofree (ExprF p) a)
type Expr' p = Cofree (ExprF p)
makeLenses ''Program
loccof :: Iso' (Cofree f SrcSpan) (Located (f (Cofree f SrcSpan)))
loccof = iso sa bt where
sa :: Cofree f SrcSpan -> Located (f (Cofree f SrcSpan))
sa (ss :< as) = Located ss as
bt :: Located (f (Cofree f SrcSpan)) -> Cofree f SrcSpan
bt (Located ss as) = ss :< as

View File

@@ -17,12 +17,10 @@ import Rlp.Parse
--------------------------------------------------------------------------------
rlpProg :: QuasiQuoter
rlpProg = undefined
-- rlpProg = mkqq parseRlpProgR
rlpProg = mkqq parseRlpProgR
rlpExpr :: QuasiQuoter
rlpExpr = undefined
-- rlpExpr = mkqq parseRlpExprR
rlpExpr = mkqq parseRlpExprR
mkq :: (Lift a) => (Text -> RLPCIO a) -> String -> Q Exp
mkq parse = evalAndParse >=> lift where

View File

@@ -13,6 +13,8 @@ import Control.Monad.Utils
import Control.Arrow
import Control.Applicative
import Control.Comonad
-- import Lens.Micro
-- import Lens.Micro.Internal
import Control.Lens
import Compiler.RLPC
import Data.List (mapAccumL, partition)
@@ -41,12 +43,6 @@ import Rlp.Syntax as Rlp
import Rlp.Parse.Types (RlpcPs, PsName)
--------------------------------------------------------------------------------
desugarRlpProgR = undefined
desugarRlpProg = undefined
desugarRlpExpr = undefined
{--
type Tree a = Either Name (Name, Branch a)
-- | Rose tree branch representing "nested" "patterns" in the Core language. That
@@ -240,5 +236,3 @@ typeToCore (VarT'' x) = TyVar (dsNameToName x)
dsNameToName :: IdP RlpcPs -> Name
dsNameToName = id
-}

View File

@@ -20,7 +20,8 @@ import System.IO (Handle, hPutStr)
import Text.Printf (printf, hPrintf)
import Data.Proxy (Proxy(..))
import Data.Monoid (Endo(..))
import Control.Lens
import Lens.Micro
import Lens.Micro.TH
import Data.Pretty
import Data.Heap
import Core.Examples

View File

@@ -41,7 +41,6 @@ evalArith (a ::* b) = evalArith a * evalArith b
evalArith (a ::- b) = evalArith a - evalArith b
instance Arbitrary ArithExpr where
-- TODO: implement shrink
arbitrary = gen 4
where
gen :: Int -> Gen ArithExpr

View File

@@ -1,67 +0,0 @@
{-# LANGUAGE ParallelListComp #-}
module Compiler.TypesSpec
( spec
)
where
--------------------------------------------------------------------------------
import Control.Lens.Combinators
import Data.Function ((&))
import Test.QuickCheck
import Test.Hspec
import Compiler.Types (SrcSpan(..), srcSpanAbs, srcSpanLen)
--------------------------------------------------------------------------------
spec :: Spec
spec = do
describe "SrcSpan" $ do
-- it "associates under closure"
-- prop_SrcSpan_mul_associative
it "commutes under closure"
prop_SrcSpan_mul_commutative
it "equals itself when squared"
prop_SrcSpan_mul_square_eq
prop_SrcSpan_mul_associative :: Property
prop_SrcSpan_mul_associative = property $ \a b c ->
-- very crudely approximate when overflow will occur; bail we think it
-- will
(([a,b,c] :: [SrcSpan]) & allOf (each . (srcSpanAbs <> srcSpanLen))
(< (maxBound @Int `div` 3)))
==> (a <> b) <> c === a <> (b <> c :: SrcSpan)
prop_SrcSpan_mul_commutative :: Property
prop_SrcSpan_mul_commutative = property $ \a b ->
a <> b === (b <> a :: SrcSpan)
prop_SrcSpan_mul_square_eq :: Property
prop_SrcSpan_mul_square_eq = property $ \a ->
a <> a === (a :: SrcSpan)
instance Arbitrary SrcSpan where
arbitrary = do
l <- chooseInt (1, maxBound)
c <- chooseInt (1, maxBound)
a <- chooseInt (0, maxBound)
`suchThat` (\n -> n >= pred l + pred c)
s <- chooseInt (0, maxBound)
pure $ SrcSpan l c a s
shrink (SrcSpan l c a s) =
[ SrcSpan l' c' a' s'
| (l',c',a',s') <- shrinkParts
, l' >= 1
, c' >= 1
, a' >= pred l' + pred c'
]
where
-- shfl as = unsafePerformIO (generate $ shuffle as)
shrinkParts =
[ (l',c',a',s')
| l' <- shrinkIntegral l
| c' <- shrinkIntegral c
| a' <- shrinkIntegral a
| s' <- shrinkIntegral s
]